Adsorption of p-Xylene by Expanded Graphite

팽창흑연을 이용한 p-Xylene 흡착

  • Published : 2012.05.01

Abstract

In this study, adsorption characteristics of expanded graphite (EG) were investigated by a series of batch adsorption tests using p-Xylene as a model volatile organic compounds (VOCs). After acid treatment, graphite were expanded at various temperature from $600^{\circ}C$ to $1000^{\circ}C$ for one minute. The optimal temperature was $800^{\circ}C$, where the expansion ratio reached 195 times of original volume. The BET specific surface area of EG was $92.4m^2/g$, which was only 1/10 of granular activated carbon (GAC), however the adsorption of p-Xylene by EG was almost completed within 5 minutes while that of GAC continued for 7 days because the majority of pores of EG was consisted with meso- and macro-pores. According to the Langmuir isotherm analysis, the maximum specific adsorption of p-Xylene onto EG was 24.0 mg/L with the adsorption constant of 7.94. In conclusion, the adsorption capacity of EG was much less than that of GAC due to the significantly lower specific surface area, but the first order kinetic constant was more than 500 times larger than GAC. Overall, EG might be effective where the fast adsorption is required.

본 연구에서는 지하수내에 존재하는 휘발성 유기물 제거를 위한 탄소계 나노물질인 팽창흑연의 흡착제 가능성을 평가하기 위해 일련의 흡착실험을 수행하였다. 황산처리 후 $600^{\circ}C-1,000^{\circ}C$에서 1분동안 팽창시킨 팽창흑연의 최적 팽창조건은 $800^{\circ}C$였으며, 팽창부피는 195배에 이르렀다. 입상 활성탄과의 흡착능력을 비교한 실험결과, 팽창흑연의 비표면적은 $92.4m^2/g$으로 나타나 활성탄의 1/10에 불과하였으나, 대상 오염물질인 p-Xylene 흡착은 5분 이내에 평형농도에 도달한 반면 입상 활성탄의 경우 평형농도에 이르는 시간이 7일 이내로 나타났다. 이는 팽창흑연의 공극구조가 주로 중간공극 및 거대공극으로 이루어져 물의 혼합에 의한 대류현상으로 흡착이 일어난 반면, 활성탄에 존재하는 공극은 대부분이 미세공극으로 이루어져 확산을 통한 느린 흡착이 진행되었기 때문으로 사료된다. 팽창흑연의 등온흡착 실험결과는 langmuir식과 일치하였으며, 최대 흡착량은 24.0mg/g, 흡착상수는 7.94로 나타났다. 결론적으로 휘발성 유기오염물에 대한 활성탄과의 비교 실험결과, 팽창흑연은 작은 비표면적으로 인해 활성탄에 비해 비흡착량은 작았으나 흡착속도는 1차속도식 기준으로 500여배가 큰 것으로 나타나 빠른 흡착제거가 필요한 공정에서 유용할 것으로 판단된다.

Keywords

References

  1. Barbara, Z., John, C. S., Gregory, H., Alan, W. G. and William, R. P.(1996), Volatile Organic Compounds up C20 Emitted from Motor Vehicles; Measurement Methods, Atmospheric Environment, Vol. 30, No. 12, pp. 2269-2286. https://doi.org/10.1016/1352-2310(95)00116-6
  2. Bedient, P. B., Rifai, H. S. and Newell, C. J.(1999), Ground Water Contamination, Prentice Hall PTR, NJ, USA, 2nd Ed., pp. 6-12.
  3. Celzard, A., Schneider, S. and Mareche, J. F.(2002), Densification of Expanded Graphite, Carbon, Vol. 40, No. 12, pp. 2185-2197. https://doi.org/10.1016/S0008-6223(02)00077-5
  4. Inagaki, M. and Suwa, T.(2001), Pore Structure Analysis of Exfoliated Graphite using Image Processing of Scanning Electron Micrographs, Carbon, Vol. 39, No. 6, pp. 915-920. https://doi.org/10.1016/S0008-6223(00)00199-8
  5. Jang, D. H., Bae, W. K., Kim, M. I., Kim, K. T (2010), Evaluation of Hybrid Thermal Oxidation(HTO) System for Removal of MEK(Methyl ethyl ketone) and Toluene, Journal of Geo-Environmental society, Vol. 11, No. 6, pp. 31-37.
  6. Komilis, D. P., Ham, R. K. and Park, J. K.(2004), Emission of Volatile Organic Compounds during Composting of Municipal Solid Waste, Water Research, Vol. 38, No. 7, pp. 1707-1714. https://doi.org/10.1016/j.watres.2003.12.039
  7. Lee, B.(2002), Characteristics of Exfoliated Graphite Prepared by Intercalation of Gaseous SO3 into Graphite, Bull. Korean Chem. Soc, Vol. 23, No. 12, pp. 1801-1805. https://doi.org/10.5012/bkcs.2002.23.12.1801
  8. Lee, C. Y.(2010), Treatment of Oil Contaminated Groundwater Using DAF and Fenton Oxidation Process, Journal of Geo-Environmental society, Vol. 11, No. 10, pp. 49-55.
  9. Li, S., Tian, S., Feng, Y., Lei, J., Wang, P., Xiong, Y.(2010), A Comparative Investigation on Absorption Performances of Three Expanded Graphite-based Complex Materials for Toluene, Journal of Hazardous Materials, Vol. 183, No. 1-3, pp. 506-511. https://doi.org/10.1016/j.jhazmat.2010.07.052
  10. Ministy of Environment(2002), The Management Status and Reduction Plan of Volatile Organic Compounds(VOC).
  11. Nishi, Y., Iwashita, N., Sawoda, Y. and Inagaki, M.(2002), Sorption Kinetics of Heavy Oil Into Porous Carbons, Water Research, Vol. 36, No. 20, pp. 5029-5036. https://doi.org/10.1016/S0043-1354(02)00225-7
  12. Park, S. J., Kim, K. S. (2004), A Study on Oil Adsorption of Expanded Gaphite, Korean Chem. Eng. Res. Vol. 42, No. 3, pp. 362-367.
  13. Seo, M. W., Suk, H. J., Choi, D. Y., Kim, J. H.(2008), Evaluation on Efficiency of VOC Removal in Groundwater Using Diffused Aeration System, Journal of Geo-Environmental society, Vol. 9, No. 2, pp. 31-37.