The Effects of Hydroxyl Radical Generation by Means of the Addition of $H_2O_2$ and $Fe^{3+}-EDTA$ in the Electron-beam Process

전자빔 공정에서 $H_2O_2$$Fe^{3+}-EDTA$의 첨가가 수산화라디칼 생성에 미치는 영향

  • 권범근 (조선이공대학 생명환경화공과) ;
  • 권중근 (조선이공대학 생명환경화공과) ;
  • 김종오 (강릉원주대학교 공과대학 토목공학과)
  • Published : 2012.10.01

Abstract

This study focuses both on the quantitative measurement of hydroxyl radicals formed by an electron beam (E-beam) process and on the decomposition of pentachlorophenol(PCP) in the presence of $H_2O_2$ and $Fe^{3+}-EDTA$ as additives. To attain this objective, the quantitative measurement of hydroxyl radical was performed with the hydroylation of benzoic acid (BA), producing hydroxybenzoic acid (OHBA). As a result, the concentrations of hydroxyl radical measured were lower than those of hydroxyl radical predicted. Probably, it indicates that the reactive species generated during E-beam irradiation are able to scavenge the hydroxyl radicals. In particular, the degradation of PCP was promoted by the addition of $H_2O_2$ (< 1mM). On the other hand, its degradation as well as the generation of chloride ions as a by-product was inhibited by the addition of $H_2O_2$ (> 1mM), and thus carbon yield(%) of oxalic acid as a by-product was increased. During E-beam irradiation the addition of $Fe^{3+}-EDTA$ effectively decomposed the PCP, thus increasing the G-values. Considering the formation of OHBA and the decomposition of PCP, these results suggest that the addition of $Fe^{3+}-EDTA$ in the E-beam process can produce the further hydroxyl radicals and enhance the efficiency of PCP decomposition at low dose.

본 연구에서는 전자빔공정(Electron beam process, E-beam)에서 생성되는 수산화라디칼의 생성특성을 조사하였고, 이 공정에 첨가제로 과산화수소와 $Fe^{3+}-EDTA$을 이용한 펜타클로로페놀(Pentachlorophenol, PCP)의 분해 특성을 조사하였다. 이를 위해 수산화라디칼의 측정은 벤조산(Benzoic Acid, BA)에 의한 hydroxylation으로 생성된 hydroxybenzoic acid(OHBA)의 농도를 정량화하여 수행하였다. 실험결과, 실제 측정된 수산화라디칼의 농도는 예측된 수산화라디칼에 비해 낮은 농도로 나타났으며, 이것은 아마도 E-beam 에너지의 조사와 동시에 형성되는 다양한 반응성 화학종이 수산화라디칼을 스케빈져(scavening)할 것으로 생각되었다. 특히, 1mM 이하의 과산화수소 주입은 PCP 분해를 촉진시킬 수 있으나 그 이상의 과산화수소의 주입은 오히려 PCP의 분해를 감소시키거나 PCP의 부산물인 염소이온과 Carbon yield(%)를 증가시키는 요인으로 작용하였다. 반면에, $20{\mu}M$$Fe^{3+}-EDTA$ 첨가는 효과적으로 PCP를 제거하였고, 이에 따른 G-value도 증가한 것으로 나타났다. OHBA의 형성과 PCP의 분해를 고려하여 보면, 결과적으로 E-beam공정에 가하는 $Fe^{3+}-EDTA$의 첨가는 상대적으로 낮은 세기에서도 효과적으로 PCP를 처리할 수 있을 것으로 생각된다.

Keywords

References

  1. Armstrong, W. A., Black, B. A. and Grant, D. W.(1960). The Radiolysis of Aqueous Calcium Benzoate and Benzoic Acid Solutions, Journal of Physical Chemistry, Vol. 64, No. 10, pp. 1415-1419. https://doi.org/10.1021/j100839a013
  2. Baker, M. S. and Gebicki, J. M.(1984), The Effect of pH on the Conversion of Superoxide to Hydroxyl Free Radical. Archives of Biochemistry and Biophysics, Vol. 234, No. 1, pp. 258-264. https://doi.org/10.1016/0003-9861(84)90348-5
  3. Bettoli, M. G., Ravanelli, M., Tositti, L., Tubertini, O., Guzzi, L., Martinotti, W., Gueirazza, G. and Tamba, M.(1998), Radiation Induced Decomposition of Halogenated Organic Compounds in Water, Radiation Physics and Chemistry, Vol. 52, Issue 1-6, pp. 327-331. https://doi.org/10.1016/S0969-806X(98)00027-9
  4. Bielski, B. H. J., Cabelli, D. E., Arudi, R. L. and Ross, A. B.(1985), Reactivity of $HO_2/O_2^-$ Radicals in Aqueous Solution, Journal of Physical Chemistry, Ref. Data, Vol. 14, Issue 4, pp. 1041-1051. https://doi.org/10.1063/1.555739
  5. Buxton G. V., Greenstock C. L., Helman W. P. and Ross A. B.(1988), Critical Review of Rate Constants for Reactions of Hydrated Electron, Hydrogen Atoms and Hydroxyl Radicals (OH/O-) in Aqueous Solution, Journal of Physical Chemistry, Ref. Data, Vol. 17, Issue 2, pp. 513-886. https://doi.org/10.1063/1.555805
  6. Fang, X., He, Y., Liu, J. and Wu, J.(1998), Oxidative Decomposition of Pentachlorophenol in Aqueous Solution, Journal of Physical Chemistry, Ref. Data, Vol. 53, Issue 4, pp. 411-415.
  7. Gehringer, P., Eschweiler, H., Szinovatz, W., Fiedler, H., Steiner, R. and Sonneck, G.(1993), Radiation-induced OH Radical Generation and Its Use for Groundwater Remediation, Radiation Physics and Chemistry, Vol. 42, pp. 711-714. https://doi.org/10.1016/0969-806X(93)90357-Z
  8. Gehringer, P., Eschweiler, H. and Fiedler, H.(1995), Ozone -Electron Beam Treatment for Groundwater Remediation, Radiation Physics and Chemistry, Vol. 46, pp. 1075-1078. https://doi.org/10.1016/0969-806X(95)00324-Q
  9. Gehringer, P. and Fiedler, H.(1998), Design of a Combined Ozoen/E-beam Process for Waste and Economic Feasibility of the Process, Radiation Physics and Chemistry, Vol. 52, Issue 1-6, pp. 345-349. https://doi.org/10.1016/S0969-806X(98)00031-0
  10. Getoff, N.(1996), Radiation-Induced Degradation of Water Pollutants-State of the Art, Radiation Physics and Chemistry, Vol. 47, Issue 4, pp. 581-593. https://doi.org/10.1016/0969-806X(95)00059-7
  11. He, Y., Liu, J., Lu, Y. and Wu, J.(2002), Gamma Radiation Treatment of Pentachlorophenol, 2,4-dichlorophenol and 2-chlorophenol in Water, Radiation Physics and Chemistry, Vol. 65, Issue 4-5, pp. 565-570. https://doi.org/10.1016/S0969-806X(02)00364-X
  12. Klein, G. W., Bhatia, K., Madhavan, V. and Schuler, R. H.(1975), Reaction of Hydroxyl Radicals with Benzoic acid, Isomer Distribution in the Radical Intermediates, Journal of Physical Chemistry, Vol. 79, No. 17, pp. 1767-1774. https://doi.org/10.1021/j100584a005
  13. Kwon, B. G., Kim, E. and Lee, J.(2009a), Pentachlorophenol Decomposition by Electron Beam Process Enhanced in the Presence of Fe(III)-EDTA, Chemosphere, Vol. 74, Issue 10, pp. 1335-1339. https://doi.org/10.1016/j.chemosphere.2008.11.049
  14. Kwon, B. G. and Kwon, J. H.(2010), Measurment of the Hydroxyl Radical Formation from $H_2O_2,\;NO_3^-$, and Fe(II) Using a Continuous Flow Injection Analysis, JIEC, 16, No. 2, pp. 19 3-199.
  15. Kwon, B. G. and Yoon, J(2009b), Superoxide Anion Radical : Principle and Application, J. Korean. Ind. Eng. Chem., Vol. 20, No. 6, pp. 593-602.
  16. Lin K., Cooper W. J., Nickelsen M. G., Kurucz C. N. and Waite T. D.(1995), Decomposition of Aqueous Solutions of Phenol Using High Energy E-beam, Applied Radiation & Isotopes, Vol. 46, Issue 12, pp. 1307-1316. https://doi.org/10.1016/0969-8043(95)00236-7
  17. Mak F. T., Zele S. R., Cooper W. J., Kurucz C. N., Waite T. D. and Nickelsen M. G.(1997), Kinetic Modeling of Carbon Tetrachloride, Chloroform and Methylene Chloride Removal form Aqueous Solutions Using the E-beam Process, Water Resource, Vol. 31, Issue 2, pp. 219-228.
  18. Nickelsen M. G., Cooper W. J., Kurucz. C. N. and Waite T. D.(1992), Removal of Benzene and Selected Alkyl-Substituted Benzenes from Aqueous Solution Utilizing Continuous High-Energy Electron Irradiation, Environ. Sci. Technol., Vol. 26, Issue 1, pp. 144-152. https://doi.org/10.1021/es00025a016
  19. Nickelsen M. G., Cooper W. J., Lin K. and Kurucz C. N.(1994), High Energy E-beam Generation of Oxidants for the Treatment of Benzene and Toluene in the Presence of Radical Scavengers, Water Resource, Vol. 28, Issue 11, pp. 1227- 1237.
  20. Pikaev, A. K.(2000a), Current Status of the Application of Ionizing Radiation to Environmental Protection: I. Ionizing Radiation Sources, Natural and Drinking Water Purification (A Review), High Energy Chemistry, Vol. 34, No. 1, pp. 3-15.
  21. Pikaev, A. K.(2000b), Current Status of the Application of Ionizing Radiation to Environmental Protection: II. Wastewater and Other Liquid Wastes(A Review), High Energy Chemistry, Vol. 34, No. 1, pp. 83-103.
  22. Zona R., Schimid S. and Solar. S.(1999), Detoxification of Aqueous Chlorophenol Solutions by Ionizing Radiation, Water Res., Vol. 33, Issue 5, pp. 1314-1319. https://doi.org/10.1016/S0043-1354(98)00319-4