Variation of Electrical Resistivity Characteristics in Sand-Silt Mixtures due to Temperature Change

온도변화에 따른 모래-실트 혼합토의 전기비저항 특성변화

  • 박정희 (고려대학교 건축사회환경공학부) ;
  • 서선영 (고려대학교 건축사회환경공학부) ;
  • 홍승서 (한국건설기술연구원) ;
  • 김영석 (한국건설기술연구원) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Published : 2012.10.01

Abstract

The application of electrical resistivity, which is related to charge mobility, has increased in the field of geotechnical engineering for the detection of underground cavern, faults and subsurface pollution level. The purpose of this study is to investigate the variation of electrical resistivity due to temperature change. Sand-silt mixture specimens prepared in the square freezing nylon cell are frozen in the frozen chamber. Four electrodes are attached on the four side walls of the freezing cell for the measurement of electrical resistance during temperature change. Electrical resistances of sand-silt mixtures with different degrees of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60% and 100%) are measured as the temperature of specimens decrease from $20^{\circ}C$ to $-10^{\circ}C$. The electrical resistances determined by Ohm's law are transformed into the electrical resistivity by calibration. Experimental results show that the higher degree of saturation, the lower electrical resistivity at $20^{\circ}C$. Electrical resistivity gradually increases as the temperature decrease from $20^{\circ}C$ to $0^{\circ}C$. For the specimens with the degree of saturation of 15% or higer, electrical resistivity dramatically changes near the temperature of $0^{\circ}C$. In addition, very high electrical resistivity is observed regardless of the degree of saturation if the specimens are frozen. This study provides the fundamental information of electrical resistivity according to the soil freezing and temperature change demonstrates that electrical resistivity be a practical method for frozen soil investigation.

전기비저항은 이온의 이동성에 의존하며 전기비저항의 활용도는 지하공동, 단층조사, 지하오염도 측정 등 다양한 지반조사 분야에서 증가하고 있다. 본 연구의 목적은 흙의 온도변화에 의한 전기비저항의 변화를 파악하는 것이다. 모래와 실트가 혼합된 시료를 동결시키기 위해 나일론 셀을 제작하였으며 시료의 온도를 변화시키기 위해 시료를 냉동고에 고정하였다. 온도변화에 따른 시료의 전기저항을 측정하기 위해 네 개의 전극을 정사각형 배열로 셀의 옆면에 설치하였다. 시료의 온도가 $20^{\circ}C$에서 $-10^{\circ}C$까지 변화하는 동안 옴의 범칙을 이용하여 포화도가 다른 각 시료(0%, 5%, 10%, 15%, 20%, 40%, 60%, 100%)의 전기저항을 측정하였으며 측정된 전기저항은 보정과정을 거쳐 전기비저항으로 환산되었다. 실험결과, 실험 초기 $20^{\circ}C$에서는 시료의 포화도가 증가할수록 전기비저항은 감소하였다. 상온에서 온도가 감소함에 따라 전기비저항은 서서히 증가하였으며, 본 연구에서 사용된 시료의 경우 포화도가 15% 이상인 시료들의 전기비저항은 $0^{\circ}C$ 근처에서 급격히 증가하였다. 또한, 동결된 시료의 전기비저항은 포화도와 관계없이 매우 크게 나타났다. 본 연구는 흙의 온도변화와 동결에 따른 전기비저항의 기초적인 정보를 제공하며 동결 깊이 추정과 같은 지반조사 시 전기비저항은 효과적인 방법이 될 수 있음을 보여준다.

Keywords

References

  1. Abu-Hassanein, Z. S., Benson, C. H. and Blotz, L. R.(1996), Electrical Resistivity of Compacted Clays, Journal of Geotechnical Engineering, Vol. 122, No. 5, pp. 397-406. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  2. Archie G. E.(1942), The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of the American Institued of Mining, Metallurgical, and Petroleum Engineers, Vol. 146, pp. 54-62.
  3. Arulanandan, K. and Muraleetharan, K.(1973), Electrical Dispersion in Relation to Soil Structure, Journal of Soil Mecahnic and Foundation Division, Vol. 99, No, 12, pp. 1113-1132.
  4. Fukue, M., Minatoa, T., Horibe, H. and Taya, N.(1999), The Micro-Structure of Clay Given by Resistivity Measurements, Engineering of Geology, Vol. 54, No. 1-2, pp. 43-53. https://doi.org/10.1016/S0013-7952(99)00060-5
  5. Harada, K., Fukuda, M. and Ishizaki, T.(1991), Measurement of Electrical Resistivity of Frozen Soils, Low Temperature Science. Series A, Physical Sciences, Vol. 50, pp. 57-68.
  6. Heigold, P. C., Gilkeson, R. H., Cartwright, K. and Reed, P. C.(1979), Aquifer Transmissivity from Surficial Electrical Methods, Ground Water, Vol. 17, No. 4, pp. 338-345. https://doi.org/10.1111/j.1745-6584.1979.tb03326.x
  7. Jung, S. H., Yoon, H. K., Lee, J. H. and Lee, J. S.(2010), Characteristics of Electrical Resistivity According to Stiffness Increase, 36th Conference, Korean Society of Civil Engineers, pp. 2228-2231.
  8. Keller, G. and Frischknecht, F.(1966), Electrical Methods in Geophysical Rospecting, Pergamin Press, New York, pp. 20-39.
  9. Kim, J. H., Yoon, H.K, Choi, Y. K. and Lee, J. S.(2009), Porosity Evaluation of Offshore Soft Soils by Electrical Resistivity Cone Probe, Journal of the Korean Geotechnical Society, Vol. 25, No. 2, pp. 45-54.
  10. Kim, Y. C.(2003), An Experimental Study on the Electrical Resistivity and Ultrasonic Wave Velocity in Frozen Siol, Korean Geoenvironmental Society, '03 Conference, pp. 135-142.
  11. Kim, Y. C., Bae, J. H. and Song, W. K.(2002), An Experimental Study on the Unfrozen Water Contents and Ultrasonic Wave Velocity in Frozen Soil, Journal of Korean Society of Civil Engineers, Vol. 2, No. 3-C, pp. 207-217.
  12. Lee, B. H., Cha E.S., Choi, J. H., Choi, Y. C., Yoo, Y. W. and Ann, C. H.(2009), Frequency Dependent Resistivity and Relative Dielectric Constant with the Water Conctents in Sand, '09 Spring Conf. on The Korean Instituted of Illuminating and Electrical Installation Engineers, pp. 348-351.
  13. McCarter, W. J.(1984), The Electrical Resistivity Characteristics of Compacted Clays, Geotechque, Vol. 34, No. 2, pp. 263-267. https://doi.org/10.1680/geot.1984.34.2.263
  14. McNeill, J.(1990), Use of Electromagnetic Methods for Ground Water Studies, Geotechnical and Environment, Geophysics, Vol. 1, Ed. Ward, pp. 191-218.
  15. Parkhomenko, E.(1967), Electrical Properties of Rocks, Plenum Press, New York, pp. 145-157.
  16. Park, S. G.(2004), Physical Property Factors Controlling the Electrical Resistivity of Subsurface, Journal of Korean Society of Earth and Exploration Geophysicists, Vol. 7, No. 2, pp. 130-135.
  17. Son, Y. H., Bong, T. H. and Chang, P. W.(2008), Characteristic of Electrical Resistivity Against Volumetric Water Content and Frequency in Weathered Woil, Journal of the Korean Society of Agricultural Engineers, Vol. 50, No. 5, pp. 63-72. https://doi.org/10.5389/KSAE.2008.50.5.063
  18. Thevanayagam, S.(1993), Electrical Response of Two-phase Soil: Theory and Applications, Journal of Geotechnical Engineering, Vol , 199, No. 8, pp. 1250-1275.
  19. Yoon, H. K. and Lee, J. S.(2010), Field Velocity Resistivity Probe for Estimating Stiffness and Void Ratio, Soil Dynamics and Earthquake Engineering, Vol. 30, No. 12, pp. 1540-1549. https://doi.org/10.1016/j.soildyn.2010.07.008