고정성 보철물의 적합도 측정 시 사용하는 실리콘 복제본 기술의 정확도 평가

An Evaluation Validity of the Silicone Replica Technique at Measurement on Fit of Fixed Dental Prostheses

  • 김재홍 (고려대학교 일반대학원 보건과학과 치의기공전공) ;
  • 김기백 (고려대학교 일반대학원 보건과학과 치의기공전공)
  • Kim, Jae-Hong (Department of Health Science Specialized in Dental Lab. Science & Engineering, Graduate School, Korea University) ;
  • Kim, Ki-Baek (Department of Health Science Specialized in Dental Lab. Science & Engineering, Graduate School, Korea University)
  • 발행 : 2012.12.31

초록

제한된 조건 하에서 수행된 본 연구에서는 다음과 같은 결론을 얻었다. 1. 치형과 고정성 보철물을 근 원심 방향의 단면에 8지점을 선정한 후 서로 다른 두 가지 방식으로 적합도를 측정하여 비교한 결과 8지점 모두에서 유의한 차이를 보이지 않았다(p<0.05). 2. 8지점을 변연부, 경사부, 축벽부, 교합면으로 분류하여 비교한 결과에서도 역시 두 측정 방법 간에 유의한 차이를 보이지 않았다(p<0.05). 이와 같은 결과를 바탕으로 실리콘 복제본 기술을 이용하여 적합도를 측정하는 것이 치형과 고정성 보철물을 직접 절단하여 단면을 측정하는 것만큼 정확하다는 결론을 얻었다. 따라서 고정성 보철물의 적합도 측정 시 비 파괴적인 방법인 실리콘 복제본 기술을 이용한다면 치형과 고정성 보철물 모두 파괴하지 않고 측정이 가능할 것으로 사료된다.

Marginal and internal fit are very important factor for the clinical long-term success of fixed dental prostheses (FDPs). A variety of methods have been applied to the measuring marginal and internal fit of FDPs. The purpose of this study was to compare the marginal and internal fit of 2 different measuring methods silicone replica technique [SRT] and die cutting technique (DCT). SRT, the space between die and FDPs were filled with light-body silicone, then stabilized by medium-body silicone. DCT, the FDPs were cemented on definitive dies and embedded into epoxy. The silicone replicas and epoxies were sectioned mesio-distal and measured 4 locations (margin, rounded chamfer, axial, occlusal) and using a digital microscope at a magnification $\times$160. For the SRT the mean${\pm}$SDs fit (${\mu}m$) recorded were: margin $88.7{\pm}22.2$, rounded chamfer $90.6{\pm}25.0$, axial wall $61.5{\pm}21.8$, occlusal $134.9{\pm}30.8$. For the DCT the mean${\pm}$SDs fit (${\mu}m$) recorded were: margin $85.3{\pm}18.0$, rounded chamfer $85.4{\pm}24.7$, axial wall $62.0{\pm}21.3$, occlusal $131.7{\pm}30.5$. The mean${\pm}$SDs size (${\mu}m$) of SRT margin was $88.7{\pm}22.2$ and of DCT margin was $85.3{\pm}18.0$. There were no statistically significant difference (p<0.05) of the four parts between SRT and DCT. It is considered an appropriate case to use SRT at fit of FDPs.

키워드

참고문헌

  1. McLean JW, von Frauenhofer JA: The estimation of cement film thickness by an in vivo technique. Br Dent J 131: 107-111, 1971. https://doi.org/10.1038/sj.bdj.4802708
  2. Holmes JR, et al.: Marginal fit of castable ceramic crowns. J Prosthet Dent 67: 594-599, 1992. https://doi.org/10.1016/0022-3913(92)90153-2
  3. Quante K, Ludwig K, Kern M: Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater 24: 1311-1315, 2008. https://doi.org/10.1016/j.dental.2008.02.011
  4. Tsitrou EA, Northeast SE, Noort RV: Evaluation of the marginal fit of three margin designs of resin composite crowns using CAD/CAM. J Dent 35: 68-73, 2007. https://doi.org/10.1016/j.jdent.2006.04.008
  5. Akbar JH, et al.: Marginal adaptation of Cerec 3 CAD/CAM composite crowns using two different finish line preparation designs. J Prosthodont 15: 155-163, 2006. https://doi.org/10.1111/j.1532-849X.2006.00095.x
  6. Martinez-Rus F, et al.: Evaluation of the absolute marginal discrepancy of zirconia-based ceramic copings. J Prosthet Dent 105: 108-114, 2011. https://doi.org/10.1016/S0022-3913(11)60009-7
  7. Bindl A, Mormann WH: Marginal and internal fit of allceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 32: 441-447, 2005. https://doi.org/10.1111/j.1365-2842.2005.01446.x
  8. Komine F, et al.: Marginal and internal adaptation of zirconium dioxide ceramic copings and crowns with different finish line designs. Dent Mater J 26: 659-664, 2007. https://doi.org/10.4012/dmj.26.659
  9. Pelekanos S, et al.: Micro-CT evaluation of the marginal fit of different In-Ceram alumina copings. Eur J Esthet Dent 4: 278-292, 2009.
  10. Kokubo Y, et al.: Clinical marginal and internal gaps of In-Ceram crowns fabricated using the GN-I system. J Oral Rehabil 32: 753-758, 2005. https://doi.org/10.1111/j.1365-2842.2005.01506.x
  11. Holmes JR, et al.: Considerations in measurement of marginal fit. J Prosthet Dent 62: 405-408, 1989. https://doi.org/10.1016/0022-3913(89)90170-4
  12. Beuer F, Aggstaller H, Edelhoff D, Gernet W, Sorensen J. Marginal and internal fits of fixed dental prostheses zirconia retainers. Dent Mater 25: 94-102, 2009. https://doi.org/10.1016/j.dental.2008.04.018
  13. Reich S, et al.: Clinical fit of four-unit zirconia posterior fixed dental prostheses. Eur J Oral Sci 116: 579-584, 2008. https://doi.org/10.1111/j.1600-0722.2008.00580.x
  14. Wettstein F, et al.: Clinical study of the internal gaps of zirconia and metal frameworks for fixed partial dentures. J Oral Sci 116: 272-279, 2008. https://doi.org/10.1111/j.1600-0722.2008.00527.x
  15. Han MS, Kim KB: Comparison of the marginal and internal fit on the cast and CAD-CAM cores. J Dent Hyg Sci 12: 368-374, 2012.
  16. Coli P, Karlsson S: Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont 17: 59-64, 2004.
  17. Harris IR, Wickens JL: A comparison of fit of spark-eroded titanium copings and cast gold alloy copings. Int J Prosthodont 7: 348-355, 1994.
  18. Campani W, Wright W, Martinoff T: Effect of die spacer on the seating of complete cast crowns with grooves. J Prosthet Dent 55: 324-328, 1986. https://doi.org/10.1016/0022-3913(86)90112-5
  19. Pera P, et al.: In vitro marginal adaptation of alumina porcelain ceramic crowns. J Prosthet Dent 72: 585-590, 1994. https://doi.org/10.1016/0022-3913(94)90289-5
  20. Lin MT, et al.: The effect of tooth preparation form on the fit of Procera copings. Int J Prosthodont 11: 580-590, 1998.