소목으로부터 분리된 Brazilin이 Streptococcus mutans ATCC 25175의 생장에 미치는 효과

Effect of Brazilin from Caesalpinia sappan L. on the Growth of Streptococcus mutans ATCC 25175

  • Kwon, Hyun-Jung (Dept. of Biology, College of Natural Science, Soonchunhyang University) ;
  • Han, Man-Deuk (Dept. of Biology, College of Natural Science, Soonchunhyang University)
  • 발행 : 2012.06.30

초록

본 연구는 소목(C. sappan L.)으로부터 분리된 Brazilin이 S. mutans의 생장 및 배양 환경 에 미치는 영향을 측정하고 다음과 같은 결과를 얻었다. 1. Methanol에 의해 분리된 소목의 수율은 총 4.8%로 나타났으며, 여러 분획물 가운데 brazilin이 포함된 에틸아세테이트(EtOAc) 분획물에서 3.94%로 가장 높은 수율을 보였다. 2. 소목으로부터 분리된 brazilin의 S. mutans 생장에 대한 효과는 대조군이 24시간에서 0.816으로 최대 생장률을 보였으나, brazilin (0.3 mg/ml, 1 mg/ml, 3 mg/ml)을 투여한 배지는 32시간 만에 최대생장을 보였다. 3. S. mutans를 16시간 동안 배양한 후 배지 내 pH를 측정한 결과 대조군은 5.25이었으며, brazilin (0.3 mg/ml, 1mg/ml, 3 mg/ml)을 투여한 배지는 각각 pH 7.00, pH 7.01, pH 6.98로 유지하여 산 생성을 억제하였다. 4. S. mutans를 48시간 동안 배양한 후 배지 내 탄수화물 변화량을 측정한 결과 대조군보다 소목의 brazilin이 투여된 배지의 탄수화물의 소모량이 적었다. 5. S. mutans를 24 시간 동안 배양한 후 배지 내 단백질 변화량을 측정한 결과, 최대 생장량을 보인 24 시간에서 대조군은 2.46 mg/ml 이었으며, 소목의 brazilin이 투여된 배지는 2.54 mg/ml 이었다. 6. S. mutans의 다당류 생성에 미치는 효과는 대조군의 경우 배양 8 시간에 300 mg/100 ml을 생성하였으나, 소목의 brazilin이 투여된 배지에서는 200 mg/100 ml을 생성하였다. 이상의 결과를 볼 때, 소목의 EtOAc 분획에 존재하는 brazilin은 배지 내 S. mutans 균주의 생육을 억제하는 효과가 있어, 향후 구강 내 우식원성 세균의 억제물질로 활용을 제시한다.

Somok, the heart wood of Caesalpinia sappan is used in traditional Chinese medicine. This study was performed to investigate the effect of growth and culture conditions of brazilin from C. sappan against S. mutans ATCC 25175. The bacteria were cultured in brain heart infusion (BHI) broth, and then incubated under 5% $CO_2$ at $37^{\circ}C$ for 18-24 hours. The effect of brazilin against S. mutans was confirmed under the changes of the culture conditions, such as growth curve and the change of pH, protein, and total carbohydrate. The growth of S. mutans in control medium was the highest at 24 hr, while brazilin-added medium (0.3 mg/ml) showed maximum growth at 32 hr. The pH values of the control medium was 5.25 at 16 hr, but the media supplemented with brazilin (0.3 mg/ml) was 7.0 at 16 hr. The amounts of total carbohydrate of the control medium was 11 mg/ml at 8 hr, but the brazilin-added media (0.3 mg/ml) was 18 mg/ml at 8 hr. In the protein change of the culture medium, the control culture broth and the brazilin supplemented-cultures was 2.4 mg/ml and 2.54 mg/ml at 24 hr, respectively. Polysaccharide contents of the control medium and test media were 3 mg/ml and 2 mg/ml at 8 hr, respectively. Thus, the application of C. sappan can be considered a useful and practical material for the prevention of dental caries.

키워드

참고문헌

  1. Koga T et al.: Sucrose-dependent cell adherence and cariogenicity of serotype C Streptococcus mutans. J Gen Microbiol 10: 2873-2883, 1986.
  2. Matsumoto M et al.: Inhibitory effects of oolong tea extract on caries-inducing properties of mutans streptococci. Caries Res 33(6): 441-445, 1999. https://doi.org/10.1159/000016549
  3. Takashio M, Okami Y: Screening of a dextransucrase inhibitor. Agric Biol Chem 46(6): 1457-1464, 1982. https://doi.org/10.1271/bbb1961.46.1457
  4. Wong RW et al.: Antimicrobial activity of chinese medicine herbs against common bacteria in oral biofilm. A pilot study. Int J Oral Maxillofac Surg 39(6): 599-605, 2010. https://doi.org/10.1016/j.ijom.2010.02.024
  5. Tsai TH et al.: In vitro antimicrobial activities against cariogenic streptococci and their antioxidant capacities: A comparative study of green tea versus different herbs. Food Chem 110(4): 859-864, 2008. https://doi.org/10.1016/j.foodchem.2008.02.085
  6. Shu SH et al.: Two novel biphenyl dimers from the heartwood of Caesalpinia sappan. Fitoterapia 82(5): 762-766, 2011. https://doi.org/10.1016/j.fitote.2011.03.010
  7. Zheng JX et al.: Effect of ethyl acetate extract of sappan wood on expression of myocardial GrB mRNA in rat model of allogeneic ectopic cardiac transplantation. Zhongguo Zhong Xi Yi Jie He Za Zhi 28: 537-540, 2008.
  8. Hu CM et al.: Heme oxygenase-1 mediates the inhibitory actions of brazilin in Raw 264.7 macrophages stimulated with lipopolysaccharide. J Ethnopharmacol 121: 79-85, 2009. https://doi.org/10.1016/j.jep.2008.09.030
  9. Pan YM et al.: Antioxidant activities of several Chinese medicine herbs. Food Chemistry 88: 347-350, 2004. https://doi.org/10.1016/j.foodchem.2004.02.002
  10. Xu HX, Lee SF: The antibacterial principle of Caesalpina sappan. Phytother Res 18: 647-651, 2004. https://doi.org/10.1002/ptr.1524
  11. Chiang LC et al.: In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother 52: 194-198, 2003. https://doi.org/10.1093/jac/dkg291
  12. Kim EC et al.: Caesalpinia sappan induces cell death by increasing the expression of p53 and p21WAF1/CIP1 in head and neck cancer cells. Am J Chin Med 33: 405-414, 2005. https://doi.org/10.1142/S0192415X05003016
  13. Baek NI et al.: Anticonvulsant compounds from the wood of Caesalpinia sappan L. Arch Pharm Res 23: 344-348, 2000. https://doi.org/10.1007/BF02975445
  14. Oh SR et al.: Anticomplementary activity of constituents from the heartwood of Caesalpinia sappan. Planta Med 64: 456-458, 1998. https://doi.org/10.1055/s-2006-957481
  15. You YO et al.: Effects of Caesalpinia sappan extracts on the growth, acid production, adhesion, and insoluble glucan synthesis of Streptococcus mutans. J Korean Acad Dent Health 27(2): 277-288, 2003.
  16. Lee H, Yu YU: Inhibitory effect of Caesalpinia sappan on caries-inducing properties of Streptococcus mutans and isolation of antibacterial component, brazilin. J Wonkwang Dent Res Inst 13: 63-83, 2004.
  17. Xu HX, Lee SF: The antibacterial principle of Caesalpinia sappan. Phytother Res 18: 647-651, 2004. https://doi.org/10.1002/ptr.1524
  18. Rivero-Cruz JF: Antimicrobial compounds isolated from Haematoxylon brasiletto. J Ethnopharmacol 119(1): 99-103, 2008. https://doi.org/10.1016/j.jep.2008.06.005
  19. Jeon JH et al.: Antibacterial effects of juglone and its derivatives against oral pathogens. J Korean Soc Appl Biol Chem 52(6): 720-725, 2009. https://doi.org/10.3839/jksabc.2009.119
  20. Jeon ES, Han MD: Effects of Lignum sappan extract on the growth of Streptococcus mutans KCTC 3065. J Dent Hyg Sci 4(3): 127-131, 2004.
  21. Kwon HJ et al.: Antibacterial activities of Caesalpinia sappan L. extract and structural analysis of its related brazilin. Kor J Microbiol. Biotechnol 38(1): 105-111, 2010.
  22. Jeon MA et al.: Antioxidative activities and antiproliferation effects on oral carcinoma KB cell of the brazilin from Caesalpinia sappan L. J Dent Hyg Sci 10(5): 365-372, 2010.
  23. Kwon HJ et al.: Antimicrobial activities and adherence inhibition on Streptococcus mutans by ethyl acetate extract from Caesalpinia sappan L. J Dent Hyg Sci 12(2): 155-162, 2012.
  24. Paek JY et al.: Effects of antibacterial and adhesive inhibition of Scutellaria baicalensis extract on Streptococcus mutans. J Dent Hyg Sci 8(4): 367-373, 2008.
  25. Han MD et al.: The composition and bioactivities of ganoderan by mycelial fractionation of Ganoderma lucidum IY009. Kor J Mycol 23(4): 285-297, 1995.
  26. De Oliveira et al.: Vibrational spectroscopic study of brazilin and brazilein, the main constituents of brazilwood from Brazil. Vib Spectrosc 28: 243-249, 2002. https://doi.org/10.1016/S0924-2031(01)00138-2
  27. Huang KC: The pharmacology of chinese herbs. America CRC Press, 266, 1993.
  28. Puchtler H, Meloan SN, Waldrop FB: Application of current concepts to metal-hematein and -brazilein stains. Histochemistry 85: 353-364, 1986. https://doi.org/10.1007/BF00982665
  29. Baek NI et al.: Anticonvulsant compounds from the wood of Caesalpinia sappan L. Arch Pharmacol Res 23: 344-348, 2000. https://doi.org/10.1007/BF02975445
  30. Safitri RP et al.: Antioxidant activity in vitro of two aromatic compounds from Caesalpinia sappan L. Biofactors 19: 71-77, 2003. https://doi.org/10.1002/biof.5520190109
  31. Shin DW: Screening and using of antioxidative effect and antimicrobial activity from plant. Food Science industry 36: 81-89, 2003.
  32. Xie YW et al.: Vasorelaxing effects of Caesalpinia sappan involvement of endogenous nitric oxide. Life Sci 67: 1913- 1918, 2000. https://doi.org/10.1016/S0024-3205(00)00772-4
  33. Zhao H et al.: New homoisoflavan from Caesalpinia sappan. Nat Med 62: 325-327, 2008. https://doi.org/10.1007/s11418-008-0231-6