우루시올을 활용한 폴리우루시올(PUOH)제조 및 LDPE/PUOH 복합필름 특성에 관한 연구

Preparation of Polyurushiol (PUOH) Using Urushiol and Property of LDPE / PUOH Composite Films

  • 김도완 (연세대학교 과학기술대학 패키징학과) ;
  • 김인수 (연세대학교 과학기술대학 패키징학과) ;
  • 서종철 (연세대학교 과학기술대학 패키징학과) ;
  • 서정상 ((주)한국내쇼날)
  • 발행 : 2012.12.10

초록

옻나무에서 추출한 우루시올은 우수한 열안정성, 항균성 및 항산화 특성을 가지고 있으나, 알러지를 유발한다고 알려져 있다. 본 연구에서는, 알러지 유발원을 가지고 있는 우루시올을 안전하고 편리하게 사용하기 위하여 폴리우루시올 (Polyurushiol, 이하 PUOH) 분말을 제조하였다. 우선, 제조한 분말에 대한 FTIR, SEM, 항산화 및 항균성에 대한 테스트를 실시하였다. Twin screw extruder system을 이용하여 PUOH 분말의 함량 변화에 따른 LDPE/PUOH 복합필름을 제조하였고 액티브 패키징(active packaging) 소재로서의 실현 가능성을 확인하였다. 제조한 LDPE/PUOH 복합필름에 대한 화학적 구조, 모폴로지, 열적특성, 광학적 특성 그리고 항균성 테스트를 PUOH함량 변화에 따라 실시하였다. FTIR과 SEM 결과 PUOH 분말의 함량이 증가할수록 LDPE와 PUOH 분말 사이에 화학적 결합이나 상호작용이 약하며, 분산성 및 혼화성이 좋지 않음을 확인하였다. 열적특성은 PUOH의 함량이 3%까지만 향상시켰다. Pure LDPE와 비교해보면, PUOH의 함량이 증가할수록 LDPE/PUOH 복합필름의 자외선 흡수성과 E. coli에 대한 항균성이 증가하는 것을 확인하였다. LDPE/PUOH 복합필름을 패키징 소재로서 성능을 극대화하기 위해서는 PUOH 분말과 필름의 분산성 향상에 관한 추가적인 연구가 필요하다는 것을 확인하였다.

Urushiol extracted from lacquer tree exhibits good thermal stabilities as well as antimicrobial andantioxidant properties. However, it has been known that the urushiol derivates bring out allergy. In this study, polyurushiol (PUOH) powders were successfully synthesized for the safe and convenient handling of allergic urushiol. First, the as-synthesized PUOH was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analyzer (TGA), antioxidant test and antimicrobial test. And then, six different LDPE/PUOH composite films were prepared via a twin screw extruder system and investigated their feasibility to use as active packaging materials. Their chemical structures, morphology, thermal optical and antimicrobial properties of the LDPE/PUOH composite films were investigated as a function of PUOH contents. FTIR and SEM results showed that LDPE/PUOH composite films have a weak interfacial interaction and poor dispersion with a high PUOH loading. The thermal properties increased up to 3 wt% as the content of PUOH increases. Compared to the pure LDPE films, LDPE/PUOH composite films are more effective in the UV absorbance and antibacterial activity against E. coli. To maximize the performance of LDPE/PUOH compositefilms as the packaging materials, further researches are required to enhance the dispersion of PUOH powders in the LDPE matrix.

키워드

참고문헌

  1. M. Ramos, A. Jimenez, M. Peltzer, and M. Garrios, J. Food Eng., 109, 513 (2012). https://doi.org/10.1016/j.jfoodeng.2011.10.031
  2. G. Jeon, S. Park, J. Seo, K. Seo, H. Han, and Y. You, J. Korean Ind. Eng. Chem., 22, 610 (2011).
  3. C. Sivestre, D. Duraccio, and S. Cimmino, Prog. Polym. Sci., 36, 1766 (2011). https://doi.org/10.1016/j.progpolymsci.2011.02.003
  4. C. Lim, I. Hong, S. Hong, K. Jang, J. S. Kim, and H. Kim, J. Sol-gel Sci. Technol., 30, 117 (2004). https://doi.org/10.1023/B:JSST.0000034699.65225.5d
  5. P. Appendinia, J. H. Hotchkissb, Innov. Food Sci. Emer. Technol, 3, 113 (2002). https://doi.org/10.1016/S1466-8564(02)00012-7
  6. Y. Lee, Y. E. Lee, J. Lee, and Y. Kim, Kor. J. Hort. Sci., 29, 447 (2011).
  7. H. Kim, J. Yeum, S. Choi, J. Lee, and I. Cheong, Prog. Org. Coat., 65, 341 (2009). https://doi.org/10.1016/j.porgcoat.2009.02.002
  8. H. Kim, J. Yeum, S. Choi, J. Lee, and I. Cheong, Prog. Org. Coat., 65, 341 (2009). https://doi.org/10.1016/j.porgcoat.2009.02.002
  9. K. Jang and H. Shin, Korean Chem. Eng. Res., 45, 473 (2007).
  10. J. M. Lee, P. Chang, and J. H. Lee, Korean J. Food Sci. Technol., 39, 133 (2007).
  11. J. Kim and M. Kim, J. Med. Plant Res., 5, 2617 (2011).
  12. Korea Standard Information Center KS J 4206.
  13. Japanese Industrial Standard JIS Z 2801, 2000.
  14. J. Xia, Y. Xu, J. Lin, and B. Hu, Mater. Lett., 63, 1499 (2009). https://doi.org/10.1016/j.matlet.2009.03.055
  15. X. Zheng, J. Wang, B. Hu, X. Lv, D. Meng, and A. S. C. Chan, Mater. Chem. Phys., 130, 1054 (2011). https://doi.org/10.1016/j.matchemphys.2011.08.032
  16. D. Kim, G. Jeon, Y. Lee, J. Seo, K. Seo, H. Han, and S. B. Khan, Prog. Org. Coat., 74, 435 (2012). https://doi.org/10.1016/j.porgcoat.2012.01.007
  17. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, Polym. Degrad. Stab., 93, 90 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.012
  18. E. Choe and D. B. Min, J. Food Sci. Nutr., 46, 1 (2006).
  19. M. R. Moreira, M. Pereda, N. E. Marcovich, and S. I. Roura, J. Food Sci., 76, 54 (2011).
  20. Y. H. Choi, J. C. Kim, J. K. Ahn, S. Y. Ko, D. H. Kim, and T. Lee, J. Korean Ind. Eng. Chem., 14, 292 (2008). https://doi.org/10.1016/j.jiec.2008.01.012
  21. K. T. Suk, S. K. Baik, H. S. Kim, S. M. Park, K. J. Paeng, Y. Uh, I. H. Jang, M. Y. Cho, E. H. Choi, M. J. Kim, and Y. L. Ham, Helicobacter, 16, 434 (2011). https://doi.org/10.1111/j.1523-5378.2011.00864.x
  22. B. P. Suppakul, J. Miltz, K. sonneveld, and S. W. Bigger, Packag. Technol. Sci., 19, 259 (2006). https://doi.org/10.1002/pts.729
  23. J. V. Gulmine, P. R. Jnissek, H. M. Heise, and L. Akcelrud, Polym. Test., 21, 557 (2002). https://doi.org/10.1016/S0142-9418(01)00124-6
  24. J. Seo, G. Jeon, E. S. Jang, S. B. Khan, and H. Han, J. App. Polym. Sci., 122, 1101 (2011). https://doi.org/10.1002/app.34248
  25. P. K. Roy, P. Surekha, C. Rajagopal, and V. Choudhary, Express Polym. Lett., 1, 208 (2007). https://doi.org/10.3144/expresspolymlett.2007.32
  26. A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, and R. Stevens, Surf. Interface Anal., 38, 473 (2006).
  27. J. Hong and H. Kim, Macromol. Res., 14, 617 (2006). https://doi.org/10.1007/BF03218733
  28. Y. Lee, MS Dissertation, Yonsei University, Seoul, Korea (2011).
  29. X. Zheng, J. Wheng, Q. Huang, B. Hu, T. Qiao, and P. Deng, Colloids. Surf. A: Physicochem. Eng. Aspects, 337, 15 (2009). https://doi.org/10.1016/j.colsurfa.2008.11.038