Synthesis and Characterization of Interfacial Properties of a Cationic Surfactant Having Three Hydroxyl Groups

세 개의 히드록실기를 가진 양이온 계면활성제 합성 및 계면 특성에 관한 연구

  • Lee, Byung Min (Environment & Resources Research Center, Green Chemistry Division, KRICT) ;
  • Kim, Ji-Hyun (Environment & Resources Research Center, Green Chemistry Division, KRICT) ;
  • Kim, Sung Soo (NanoBio Fusion Research Center, Advanced Materials Division, KRICT) ;
  • Lim, Jong Choo (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul)
  • 이병민 (한국화학연구원 계면재료공정연구그룹) ;
  • 김지현 (한국화학연구원 계면재료공정연구그룹) ;
  • 김승수 (한국화학연구원 나노기술융합연구단) ;
  • 임종주 (동국대학교-서울 공과대학 화공생물공학과)
  • Published : 2012.10.10

Abstract

In this study, a cationic surfactant BHMAS (N,N-bis-(3'-n-dodecyloxy-2'-hydroxypropyl)-N-methyl-2-hydroxyethylammonium methyl sulfate) having two lauryl and three hydroxyl groups was synthesized by the reaction of n-dodecyl glycidyl ether and 2-aminoethanol followed by the quarternization with dimethyl sulfate. The structure of the product was elucidated by $^{1}H-NMR$ and FT-IR. The CMC (critical micelle concentration) and surface tension of BHMAS at CMC condition were found to be $9.12\;{\times}\;10^{-4}$ mol/L and 28.71 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer indicated that a relatively long time was required to saturate the interface between air and aqueous surfactant solution. The interfacial tension measured between 1 wt% surfactant solution and n-decane reached an equilibrium value of 0.045 mN/m in 5 min. The adsorption capacity of the synthesized surfactant was observed to be excellent, which suggests that the surfactant can be used as a softening agent during a laundry process.

본 연구에서는 도데실 글리시딜 에테르와 아미노에탄올을 반응시킨 후 디메틸 설페이트로 4급화시켜 분자 내에 2개의 라우릴기, 3개의 히드록실기를 가진 양이온 계면활성제 BHMAS (N,N-bis-(3'-n-dodecyloxy-2'-hydroxypropyl)-N-methyl-2-hydroxyethylammonium methyl sulfate)를 합성하였고, 생성물의 분자구조는 $^{1}H-NMR$, FT-IR 등의 기기분석을 통하여 확인하였다. 합성한 계면활성제의 CMC (critical micelle concentration)는 $9.12\;{\times}\;10^{-4}$ mol/L이며, CMC에서의 표면장력은 28.71 mN/m이었다. Maximum bubble pressure tensiometer를 사용하여 동적 표면장력을 측정한 결과, 공기와 수용액의 계면이 계면활성제 단분자에 의하여 포화되는 데 비교적 오랜 시간이 소요되었다. 1 wt% 계면활성제 수용액과 n-decane 사이의 계면장력은 0.045 mN/m이며, 평형에 도달하는 데 약 5 min의 시간이 소요되었다. 합성된 계면활성제의 흡착 특성이 매우 우수하였으며, 합성한 양이온 계면활성제가 섬유표면에 효과적으로 흡착되어 유연효과를 나타낼 수 있음을 확인하였다.

Keywords

References

  1. C. A. Miller and P. Neogi, Interfacial Phenomena: Equilibrium and Dynamic Effects, 17, 140, Surfactant Science Series, Marcel Dekker, New York (1985).
  2. J. C. Lim, J. Kor. Ind. Eng. Chem., 6, 610 (1995).
  3. J. C. Lim, J. Kor. Ind. Eng. Chem., 8, 473 (1997).
  4. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, J. Kor. Ind. Eng. Chem., 10, 537 (1999). https://doi.org/10.1007/s100510050883
  5. H. K. Ko, B. D. Park, and J. C. Lim, J. Kor. Ind. Eng. Chem., 11, 679 (2000).
  6. J. S. Kim, J. S. Park, and J. C. Lim, J. Kor. Ind. Eng. Chem., 20, 9 (2009).
  7. J. S. Kim, J. S. Park, and J. C. Lim, Korean Chem. Eng. Res., 47, 31 (2009).
  8. J. S. Kim and J. C. Lim, J. Kor. Ind. Eng. Chem., 20, 479 (2009).
  9. J. S. Kim and J. C. Lim, Korean Chem. Eng. Res., 47, 38 (2009).
  10. The Korean Society of Industrial and Engineering Chemistry, Recent Research Trends in Colloid and Interface Chemistry, 80 Korea (2007).
  11. L. H. Huber, J. Am. Oil. Chem. Soc., 61, 377 (1984). https://doi.org/10.1007/BF02678797
  12. J. Cross and E. J. Singer, Cationic Surfactants, 53, 6, Marcel Dekker, New York (1994).
  13. B. Milwidsky, Happi, 9, 40 (1987).
  14. C. A. Kim, H. J. Choi, H. K. Yoon, S. Y. Park, and J. Y. Kim, J. Kor. Ind. Eng. Chem., 9, 149 (1998).
  15. S. B. Rho and M. A. Lim, J. Kor. Ind. Eng. Chem., 9, 177 (1998).
  16. H. S. Bak, K. Y. Choi, J. D. Lee, Y. K. Kim, and H. J. Ahn, J. Kor. Ind. Eng. Chem., 9, 404 (1998).
  17. S. G. Lyu, D. H. Lee, G. S. Sur, and T. J. Lee, J. Kor. Ind. Eng. Chem., 10, 1096 (1999).
  18. K. H. Kang and K. H. Lim, Applied Chemistry., 3, 172 (1999).
  19. J. H. Oh, J. Kor. Ind. Eng. Chem., 11, 80 (2000).
  20. H. U. Kim, K. H. Kang, and K. H. Lim, Applied Chemistry, 4, 280 (2000).
  21. E. K. Kang, B. M. Lee, H. A. Hwang, and J. C. Lim, J. Ind. Eng. Chem., 17, 845 (2011). https://doi.org/10.1016/j.jiec.2011.09.001
  22. J. C. Lim, E. K. Kang, J. M. Park, H. C. Kang, and B. M. Lee, Accepted at J. Ind. Eng. Chem. (2012).
  23. B. M. Lee, H. C. Kang, J. M. Park, and J. Yoon, US Patent 6392064 (2002).
  24. J. C. Lim, B. J. Kim, J. G. Lee, and K. Y. Choi, Appl. Chem. Eng., 22, 376 (2011).
  25. J. C. Lim, J. Kor. Ind. Eng. Chem., 15, 929 (2004).
  26. K. Y. Lai and N. Dixit, Foams: Theory, Measurements, and Applications, eds. R. K. Prudhomme and S. A. Khan, 57, 315, Surfactant Science Series, Marcel Dekker, New York (1996).
  27. D. Exerowa and P. M. Kruglyakov, Foam and Foam Films: Theory, Experiment, Application, 5, 1, Studies in Surface Science, Elsevier, Amsterdam (1988).
  28. P. R. Garrett, Defoaming: Theory and Industrial Application, ed. P. R. Garrett, 45, 1, Surfactant Science Series, Marcel Dekker, New York (1993).