Preparation of $TiO_2$ Particles using Binary Ionic Liquids for Photocatalysis

이성분계 이온성액체를 이용한 광촉매용 이산화 티타늄 입자 제조

  • Lee, Seulbi (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 이슬비 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Published : 2012.08.10

Abstract

$TiO_2$ particles with various shapes were synthesized by using a modified sol-gel method with binary ionic liquids. The structural properties of the particles were significantly affected by the composition of ionic liquids. This is mainly attributed to the interaction between the organic solvent and ionic liquid at the interface leading to the formation of particle structure. The photocatalytic activity of the prepared samples was also examined for the degradation of 4-chlorophenol. Among the particles, $TiO_2$ prepared with 1-octyl-3-methylimidazolium tetrafluoroborate and 1-octyl-3-methylimidazolium tetrafluoroborate showed the best photocatalytic performance.

이성분계 이온성액체를 사용하여 다양한 모양의 이산화티타늄 입자를 수정된 졸-겔법을 이용하여 제조하였다. 합성에 사용된 이온성액체의 종류에 따라 이산화티타늄 입자는 다양한 형태를 가지고 있었다. 이는 이온성액체와 유기용매계면 사이에서 형성되는 이산화티타늄이 두 물질 사이의 상호작용에 영향을 받아 입자의 모양이 형성되기 때문이다. 제조된 입자의 광촉매 성능을 측정하기 위하여 4-chlorophenol 분해반응을 실시하였다. 그 결과 1-Octyl-3-methylimidazolium tetrafluoroborate과 1-Octyl-3-methylimidazolium tetrafluoroborate를 이용하여 합성한 $TiO_2$ 입자가 가장 우수한 광촉매 활성을 나타내었다.

Keywords

References

  1. A. Fujishima, K. Hashimoto, and T. Watanabe, $TiO_2$ Photocatalysis, Fundamentals and Applications, Bkc Inc., Tokyo (1999).
  2. L. Jakob, E. Oliveros, O. Legrini, and A. M. Braun, Photocatalytic Purification and Treatment of Water and Air, ed. F. D. Ollis, and H. Al-Ekabi, 511, Elsevier Science, Amsterdam (1993).
  3. J. Grzechulska, M. Hamerski, and A. W. Morawski, Water Res., 34, 1638 (2000). https://doi.org/10.1016/S0043-1354(99)00275-4
  4. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  5. D. M. Antonelli, and Ying, J. Y., Angew. Chem. Int. Ed., 34, 2014 (1995). https://doi.org/10.1002/anie.199520141
  6. P. Yang, D. Zhao, D. I. Margolese, B. F. Chemlka, and G. D. Stucky, Chem. Mater., 11, 2813 (1999). https://doi.org/10.1021/cm990185c
  7. D. M. Antonelli, Micropor. Mesopor. Mater., 30, 315 (1999). https://doi.org/10.1016/S1387-1811(99)00042-6
  8. Z. Y. Peng, Z. Shi, and M. L. Liu, Chem. Commun., 21, 2125 (2000).
  9. H. Yoshitake, T. Sugihara, and T. Tatsumi, Chem. Mater., 14, 1023 (2002). https://doi.org/10.1021/cm010539b
  10. H. Lee, J. S. Lee, and H. S. Kim, Appl. Chem. Eng., 21, 12 (2010).
  11. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000).
  12. T. Welton, Chem. Rev., 99, 2071 (1999). https://doi.org/10.1021/cr980032t
  13. T. Nakashima and N. Kimizuka, J. Am. Chem. Soc., 125, 6386 (2003). https://doi.org/10.1021/ja034954b
  14. M. Zhao, L. Zheng, N. Li, and L. Yu, Mater. Lett., 62, 4591 (2008). https://doi.org/10.1016/j.matlet.2008.08.047
  15. Y. Zhou and M. Antonietti, J. Am. Chem. Soc., 125, 14960 (2003). https://doi.org/10.1021/ja0380998
  16. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscow, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985). https://doi.org/10.1351/pac198557040603
  17. L. Z. Wang, S. Tomura, M. Maeda, F. Ohashi, K. Inukai, and M. Suzuki, Chem. Lett., 12, 1414 (2000).