Catalytic Cracking of Waste Lubricant Oil over Solid Acid Catalysts

고체산 촉매를 이용한 폐윤활유의 촉매 분해

  • Hwang, In Hye (Department of Environmental Engineering Kongju National University) ;
  • Yang, Hyeon Sun (Department of Environmental Engineering Kongju National University) ;
  • Lee, Jong-Jib (Division of Chemical Engineering, Kongju National University) ;
  • Choi, Ko-Yeol (Department of Chemical Engineering, Seoul National University of Science and Technology) ;
  • Lee, Chang-Yong (Department of Environmental Engineering Kongju National University)
  • 황인혜 (공주대학교 환경공학과) ;
  • 양현선 (공주대학교 환경공학과) ;
  • 이종집 (공주대학교 화학공학부) ;
  • 최고열 (서울과학기술대학교 화학공학과) ;
  • 이창용 (공주대학교 환경공학과)
  • Published : 2012.06.10

Abstract

The catalytic cracking of waste lubricant oil was carried out on silica-alumina (SA), hydrogen-type mordenite (HM), and dealuminated mordenite (DM) with the silica/alumina ratio of 10.5, 10, and 12.5, respectively. Activity in the catalytic cracking was found to be in the order of SA > DM > HM. Carbon number distribution of the oil obtained over SA was similar to that of gasoline while that of the oil obtained over DM was similar to that of diesel. Carbon number distribution of the oil obtained over HM was similar to that between gasoline and diesel. Acid amounts of three kinds of catalysts were found to be in the order of $SA\;{\approx}\;HM$ > DM. Unlike HM and DM with pores of an uniform diameter below 10 A, SA had a pore size distribution within the range of 10 to 50 A. These results indicate that the acid amount and pore size of the catalysts may be related to the carbon number distribution of the cracked oil. The decrement of surface area by the accumulation of carbon and impurities on the surface of the catalyst was found to be in the order of SA > DM > HM.

$SiO_2/Al_2O_3$ 비가 10.5인 실리카-알루미나(SA), 10인 수소형 모더나이트(HM), 12.5인 탈알루미늄 모더나이트(DM) 등을 이용하여 폐윤활유의 촉매분해를 수행하였다. 촉매의 분해능은 SA > DM > HM 시료 순으로 높았다. SA 시료 상에서 얻어진 분해오일은 휘발유의 탄소수 분포와 가까웠고 반면 DM 시료의 경우에는 경유의 탄소수 분포와 가까웠다. HM시료 상에서 얻어진 분해오일의 탄소수 분포는 휘발유와 경유의 중간 정도였다. 산량은 $SA\;{\approx}\;HM$ > DM 시료 순으로 많았다. 10 A 이하의 균일 세공을 가지는 HM과 DM 시료와는 달리, SA 시료의 세공은 10~50 A 범위의 분포를 나타내었다. 이러한 결과들은 촉매의 산량과 세공 크기가 분해오일의 탄소수 분포와 관계가 있음을 보여준다. 촉매 표면에 탄소 및 불순물의 침적에 의한 표면적 감소는 SA > HM > DM 시료 순으로 컸다.

Keywords

References

  1. D. W. Brinkman, Lubric. Eng., 43, 324 (1987).
  2. K. M. Kim, Y. S. Kim, S. U. Jeong, and S. H. Kim, HWAHAK KONGHAK, 41, 122 (2003).
  3. S. S. Kim, J. Korean Ind. Eng. Chem., 18, 511 (2007).
  4. H. K. Bae and J. T. Seo, HWAHAK KONGHAK, 34, 123 (1996).
  5. S. S. Kim, B. H. Chun, C. J. Park, and S. H. Kim, J. of KSEE, 22, 1063 (2000).
  6. K. H. Lee, Y. W. Lee, and B. H. Ha, Journal of Catalysis, 178 328 (1988).
  7. C. Y. Lee, H. R. Kim, and K. Y. Choi, J. Korea Society of Waste Management, 19, 715 (2002).
  8. W. Kaminsky and H. Rossler, Chemtech, Feb., 108 (1992).
  9. A. R. Songip, T. Masuda, H. Kuwhara, and K. Hashimoto, Energy and Fuels, 8, 136 (1994). https://doi.org/10.1021/ef00043a023
  10. K. J. Kim, D. S. Cho, J. H. Yoon, and Y. M. Won, J. Korea Society of Waste Management, 12, 279 (1995).
  11. J. H. Bae, Chemical Industry and Technology, 12, 30 (1994).
  12. C. N. Satterfield, Heterogeneous Catalysis in Practice, 151, McGraw- Hill, New York (1980).
  13. K. Tanabe, Solid Acids and Bases, 5, Academic Press, New York (1970).
  14. F. Lonyi and J. Valyon, Microporous and Mesoporous Materials, 47, 293 (2001). https://doi.org/10.1016/S1387-1811(01)00389-4
  15. S. M. Csicsery, Journal of Catalysis, 19, 394 (1970). https://doi.org/10.1016/0021-9517(70)90264-2
  16. Y. S. Lee, Ph. D. Dissertation, Hanyang University, Seoul, Korea (1986).