Control of the Gold Electrode Work Function for High Performance Organic Thin Film Transistors

표면개질된 금 전극의 일함수 조절을 통한 고성능 유기박막 트랜지스터 개발

  • Park, Yeong Don (Department of Energy and Chemical Engineering, University of Incheon)
  • 박영돈 (인천대학교 에너지화학공학과)
  • Published : 2012.06.10

Abstract

Au electrodes modified with self-assembled monolayers (SAMs) were used to control the work function of source/drain electrodes in triethylsilylethynyl anthradithiophene (TES ADT)-based organic thin film transistors (OTFTs). By using benzothiol (BT) and pentafluorobenzothiol (PFBT) SAMs, the hole injection barrier between Au and the highest occupied molecular orbital (HOMO) of TES ADT was controlled. After a solvent annealing, TES ADT OTFTs with PFBT SAM-treated Au electrodes were found to exhibit high field-effect mobilities of $0.05\;cm^2/Vs$ and on/off current ratios of $10^6$.

용액공정이 가능한 저분자 유기반도체, triethylsilylethynyl anthradithiophene (TES ADT)을 기반으로 한 유기박막 트랜지스터에서 금 전극의 일함수를 제어하기 위해 표면을 자기조립 단분자막(self-assembled monolayers, SAMs)으로 개질하였다. Benzothiol (BT)과 pentafluorobenzothiol (PFBT) 자기조립 단분자막을 이용해 금 전극의 일함수를 조절하고 이를 통해 TES ADT의 HOMO 준위에 대한 정공주입장벽을 최소화 하고자 하였다. 또한, solvent annealing 후처리 공정을 통해 TES ADT 박막의 결정성을 향상시켰고, 이를 PFBT로 개질된 금 전극을 기반으로 한 유기박막 트랜지스터에 적용한 경우 $0.05\;cm^2/Vs$의 높은 전계효과 이동도와 $10^6$의 높은 점멸비를 보고하였다.

Keywords

References

  1. J. A. Lim, F. Liu, S. Ferdous, M. Muthukumar, and A. L. Briseno, Mater. Today, 13, 14 (2010).
  2. G. Lu, H. Usta, C. Risko, L. Wang, A. Facchetti, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc., 130, 7670 (2008). https://doi.org/10.1021/ja800424m
  3. R. J. Kline and M. D. McGehee, Polym. Rev., 46, 27 (2006).
  4. Y. D. Park, J. A. Lim, H. S. Lee, and K. Cho, Mater. Today, 10, 46 (2007).
  5. D. J. Gundlach, J. E. Royer, B. H. Hamadani, L. C. Teague, A. J. Moad, O. D. Jurchescu, O. Kirillov, C. A. Richter, J. G. Kushmeric, L. J. Richter, S. K. Park, T. N. Jackson, S. Subramanian, and J. E. Anthony, Nature Mater., 7, 216 (2008). https://doi.org/10.1038/nmat2122
  6. Y. D. Park, J. H. Cho, D. H. Kim, Y. Jang, H. S. Lee, K. Ihm, T.-H. Kang, and K. Cho, Electrochem. Solid-State Lett., 9, G317 (2006). https://doi.org/10.1149/1.2337862
  7. D. H. Kim, Y. D. Park, Y. Jang, H. Yang, K. Cho, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, and C. Y. Ryu, Adv. Funct. Mater., 15, 77 (2005). https://doi.org/10.1002/adfm.200400054
  8. L. H. Jimison, A. Salleo, M. L. Chabinyc, D. P. Bernstein, and M. F. Toney, Phys. Rev. B: Condens. Matter Mater. Phys., 78, 125319 (2008).
  9. L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys., 94, 6129 (2003). https://doi.org/10.1063/1.1613369
  10. T. Zyung, S. H. Kim, H. Y. Chu, J. H. Lee, S. C. Lim, J. I. Lee, and J. Oh, Proceedings of the IEEE, 93, 1265 (2005).
  11. N. J. Watkins, L. Yan, and Y. Gao, Appl. Phys. Lett., 80, 4384 (2002). https://doi.org/10.1063/1.1485129
  12. I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Phys. Rev. B, 54, 14321 (1996). https://doi.org/10.1103/PhysRevB.54.R14321
  13. B. Boer, A. Hadipour, M. M. Mandoc, T. Woundenbergh, and P. W. M. Bloom, Adv. Mater., 17, 621 (2005). https://doi.org/10.1002/adma.200401216