리튬 전지에서 산소, 황의 물리화학적 거동

Physicochemical Behaviors of Oxygen and Sulfur in Li Batteries

  • 박동원 (광주과학기술원 솔라에너지연구소 에너지저장 연구실) ;
  • 김진원 (광주과학기술원 솔라에너지연구소 환경공학부) ;
  • 김종원 (광주과학기술원 솔라에너지연구소 에너지저장 연구실) ;
  • 이재영 (광주과학기술원 솔라에너지연구소 에너지저장 연구실)
  • Park, Dong-Won (Lab. for Energy Storage System, Research Institute for Solar & Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Jin Won (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Jongwon (Lab. for Energy Storage System, Research Institute for Solar & Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jaeyoung (Lab. for Energy Storage System, Research Institute for Solar & Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST))
  • 발행 : 2012.06.10

초록

전기자동차, 하이브리드 자동차의 필요성과 스마트 IT 기기의 급속한 발전으로 인한 고용량 고출력 전지의 수요가 급증하고 있다. 현재 상용화 된 리튬이온전지는 기술적 문제에 의해 제한된 에너지 밀도만이 이용되고 있어서 보다 높은 에너지 밀도를 갖는 리튬-황 및 리튬-공기전지 개발이 주목 받고 있다. 새로운 Li 배터리 시스템의 양극물질인 황과 산소는 유사한 물리화학적 특성을 갖고 풍부한 자원 매장량으로 상용화가 어렵지 않을 것으로 전망한다. 따라서 본 총설에서는 리튬-황 및 리튬-공기 전지 시스템의 다공성 구조 양극개발, 양극과 전해질의 계면반응 최적화 및 높은 내구성이 있는 리튬음극 개발과 같은 공통 이슈를 해결하고자 하는 비전을 제시하고자 한다.

Of late, the development of advanced batteries with high power density and capacity has been indispensible for pushing ahead with much wider applications to electric vehicles and smart IT devices. However, a conventional Li-ion battery contains a limited energy density due to various technological challenges such that other types of Li batteries including Li-S and Li-air have been extensively studied due to their interestingly high energy capacities. Sulfur and oxygen, of which both are cathode materials, showing similar physicochemical characteristics have widely been available which may also contribute to the commercialization of these batteries. In this review, we introduce some perspectives in improving these advanced Li batteries through several approaches such as the provision of porous cathode structures, the optimization of cathode-electrolyte interfaces and the modification of Li anodes.

키워드

참고문헌

  1. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  2. P. G. Bruce, B. Scrosati, and J.-M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008). https://doi.org/10.1002/anie.200702505
  3. P. G. Bruce, L. J. Hardwick, and K. M. Abraham, Mater. Res. Soc. Bull., 36, 506 (2011).
  4. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, Nature Mater., 11, 19 (2011). https://doi.org/10.1038/nmat3191
  5. J.-S. Lee, S. T. Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, and J. Cho, Adv. Energy Mater., 1, 34 (2011). https://doi.org/10.1002/aenm.201000010
  6. X. Ji and L. F. Nazar, J. Mater. Chem., 20, 9821 (2010). https://doi.org/10.1039/b925751a
  7. X. Ji, K. T. Lee, and L. F. Nazar, Nature Mater., 8, 500 (2009).
  8. Y. C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, and Y. Shao-Horn, J. Am. Chem. Soc., 132, 12170 (2010). https://doi.org/10.1021/ja1036572
  9. H. Cheng and K. Scott, J. Power Source, 195, 1370 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.030
  10. V. Giordani, S. A. Freunberger, P. G. Bruce, J.-M. Tarascon, and D. Larcher, Electrochem. Solid State Lett., 13, A180 (2010).
  11. C. Trana, X. Q. Yang, and D. Qu, J. Power. Sources, 195, 2057 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.012
  12. Y. J. Choi, K. W. Kim, H. J. Ahn, and J. H. Ahn, J. Alloy Compd., 449, 313 (2008). https://doi.org/10.1016/j.jallcom.2006.02.098
  13. W. Zheng, Y. W. Liu, X. G. Hu, and C. F. Zhang, Electrochim. Acta, 51, 1330 (2006). https://doi.org/10.1016/j.electacta.2005.06.021
  14. A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, and M. Tatsumisago, J. Power Sources, 183, 422 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.031
  15. Y. N. Zhou, C. L. Wu, H. Zhang, and X. J. Wu, Electrochim. Acta, 52, 3130 (2007). https://doi.org/10.1016/j.electacta.2006.09.054
  16. C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, and Z. Zhou, J. Phys. Chem. C, 113, 4712 (2009). https://doi.org/10.1021/jp809473e
  17. X. P. Gao and H. X. Yang, Energy Environ. Sci., 3, 174 (2010). https://doi.org/10.1039/b916098a
  18. C. D. Liang, N. J. Dudney, and J. Y. Howe, Chem. Mater., 21, 4724 (2009). https://doi.org/10.1021/cm902050j
  19. Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, and Y. Cui, Nano Lett., 10, 1486 (2010). https://doi.org/10.1021/nl100504q
  20. S. Li, M. Xie, J. Liu, H. Wang, and H. Yan, Electrochem. Solid State Lett., 14, A105 (2011). https://doi.org/10.1149/1.3582793
  21. Y. Cao, X. Li, I. A. Aksay, J. Lemmon, Z. Nie, Z. Yang, and J. Liu, Phys. Chem. Chem. Phys., 13, 7660 (2011). https://doi.org/10.1039/c0cp02477e
  22. X. Ji, S. Evers, R. Black, and L. F. Nazar, Nature Commun., 2, 325 (2011). https://doi.org/10.1038/ncomms1293