Methane Production from the Mixture of Paperboard Sludge and Sewage Sludge in an Anaerobic Treatment Process

판지슬러지와 하수슬러지를 이용한 혐기성 처리 공정에서 메탄 생산

  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Lee, Hyun Min (Department of Biological and Environmental Engineering, Semyung University) ;
  • Jeong, Tae-Young (Division of Environmental Engineering, Yonsei University) ;
  • Yeom, Sung Ho (Department of Biochemical Engineering, Gangneung-Wonju National University)
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 이현민 (세명대학교 바이오환경공학과) ;
  • 정태영 (연세대학교 환경공학부) ;
  • 염승호 (강릉원주대학교 생명화학공학과)
  • Published : 2012.04.10

Abstract

In this work, the mixture of sewage sludge incubated in an anaerobic bioreactor for 35 days and paperboard sludge was treated in a batch anaerobic digester equipped with a ultrasonicator, and methane production during the treatment was investigated. The Soluble Chemical Oxygen Demand (SCOD) increased with increasing the amplitude of ultrasonicator, which help solubilizing paperboard sludge more effectively. The optimum amplitude of ultrasonicator for the enhancing methane productivity was found to be $142.5\;{\mu}m$ and the methane production amount increased as the anaerobic digestion period became longer. In addition, the anaerobic digestion was performed with various biomass (6000, 9000 and 12000 mg/L) and methane production increased with higher cell mass. These results will be used as valuable data to enhance the methane production from anaerobic digestion of the high concentration of organic wastes containing the paperboard sludge and sewage sludge.

본 연구에서는 혐기성 생물 반응조에서 35일 동안 배양된 하수슬러지와 판지슬러지를 혼합한 후, 초음파 파쇄기를 이용한 고농도 유기성 폐기물의 회분식 혐기 소화 공정에서 메탄 생산 특성이 고찰되었다. 초음파 파쇄기의 진폭이 높아질수록 Soluble Chemical Oxygen Demand (SCOD)가 증가함으로써 판지슬러지의 효과적 가용화가 이루어졌다. 또한, 메탄 생산성 향상을 위한 초음파 파쇄기의 최적 진폭이 $142.5\;{\mu}m$임을 구하였으며, 혐기소화 기간이 길러질수록 메탄 생산량은 증가하였다. 그리고, 바이오매스 변화(6000, 9000, 12000 mg/L)에 의한 혐기성 소화처리가 이루어졌을 때, 미생물 농도가 높아질수록 메탄 생산량이 모두 증가함을 알 수 있었다. 이러한 실험 결과들은 판지슬러지와 하수슬러지가 혼합된 고농도 유기성 폐기물의 혐기성 소화 공정에 의한 메탄 생산성을 향상시키는 자료로 활용될 수 있을 것이다.

Keywords

References

  1. M. H. Lim, J. K. Lee, S. Y. Nam, and J. H. Ahan, Ceramist, 14, 7 (2011).
  2. M. C. Monte, E. Fuente, A. Blanco, and C. Nerro, Waste Management, 29, 293 (2009). https://doi.org/10.1016/j.wasman.2008.02.002
  3. J.-W. Choi and K.-S. Lee, K. J. Environ. Agric., 23, 22 (2004). https://doi.org/10.5338/KJEA.2004.23.1.022
  4. J. S. Heo, K. S. Kim, and H. S. Ha, K. J. Environ. Agric., 7, 26 (1998).
  5. A. Taramian, K. Doosthoseini, S. A. Mirshokraii, and M. Faezipour, Waste Maangement, 27, 1739 (2007). https://doi.org/10.1016/j.wasman.2006.09.009
  6. P. Ribeiro, A. Albuquerque, L. Quinta-Nova, and V. Cavaleiro, Resource, Conservation and Recycling, 54, 1303 (2010). https://doi.org/10.1016/j.resconrec.2010.05.009
  7. D. Hawkes, R. Hortonand, and D. S. Staford, Conservation and Recycling, 2, 181 (1978). https://doi.org/10.1016/0361-3658(78)90056-5
  8. V. Strezov and T. J. Evans, Waste Management, 29, 1644 (2009). https://doi.org/10.1016/j.wasman.2008.11.024
  9. J. Mata-Alvarez, S. Mace, and P. Llabres, Bioresource Technol., 74, 3 (2000). https://doi.org/10.1016/S0960-8524(00)00023-7
  10. A. Mshandete, L. Bjornsson, L. A. K. Kivaisi, S. T. Rubindamayugi, and B. Mattiasson, Water Res., 39, 1569 (2005). https://doi.org/10.1016/j.watres.2004.11.037
  11. W. verstraete and P. vandevivere, Crit. Rev. Environ. Sci. Technol., 29, 151 (1999). https://doi.org/10.1080/10643389991259191
  12. K. S. Kim, J. Kor. Soi. Environ. Eng., 29, 8 (2007).
  13. APHA, Standard Methods for the examination of water and waste-water, 19th ed., American Public Health Association, Washington DC, USA (1995).