The Study of Water Resistance and Water/Oxygen Barrier Properties of Poly(vinyl alcohol)/Water-soluble Poly(ethylene-co-acrylic acid) Blend Films

폴리비닐알콜/수분산 에틸렌-아크릴산 공중합체 블렌딩 필름의 내수성 및 수분/산소 차단성 연구

  • Published : 2012.04.10

Abstract

Blending films having enhanced water-resistance and barrier properties were prepared using the mixtures of poly(vinyl alcohol) (PVA) aqueous solution and poly(ethylene-co-acrylic acid) (EAA) dispersed in water. Thermal-mechanical properties, contact angles, water-vapor transmission rates (WVTR) and oxygen transmission rates $(O_2TR)$ were measured with the content of EAA of blending films, and their water-resistance was evaluated. The tensile strength of the films was found to be $9.16{\sim}11.75\;kg/mm^2$ which showed no significant difference compared with that of PVA, and the hardness increased with the content of EAA. The glass transition temperature and melting temperature of the blending films were slightly improved. The film prepared with PVA/EAA (= 90/10), of which the swelling and solubility were measured to be 109 and 0%, respectively, showed improved water-resistance. The WVTR and $O_2TR$ for the PET film (thickness $50\;{\mu}m$) coated with PVA/EAA (= 90/10) film (thickness $2.5\;{\mu}m$) were measured to be $9.1\;g/m^2/day$ and $2.0\;cc/m^2/day$, respectively.

에틸렌-아크릴산 공중합체(EAA)를 물에 분산시킨 후, 폴리(비닐 알코올) (PVA) 수용액과 블렌딩하여 내수성 및 차단성이 향상된 필름을 제조하였다. EAA의 함량에 따라 제조된 필름으로 열적-기계적 성질, 접촉각, 수분 투과율, 산소 투과율을 측정하였고 내수성에 대한 평가 실험도 진행하였다. 필름의 인장강도는 $9.16{\sim}11.75\;kg/mm^2$으로 PVA와 큰 차이가 없었으며, 경도의 경우는 EAA 함량에 따라 값이 점점 증가하였다. 유리전이 온도와 용융 온도는 약간 향상되었다. PVA/EAA의 비율이 90/10인 블렌딩 필름의 경우 Swelling 109%, Solubility 0%로 측정되어 PVA에 비하여 내수성이 개선되었음을 확인할 수 있었다. 또한, PVA/EAA의 비율이 90/10인 블렌딩 필름(두께 $2.5\;{\mu}m$)을 PET 필름(두께 $50\;{\mu}m$) 위에 코팅하여 제조된 필름의 수분투과율과 산소 투과율은 각각 $9.1\;g/m^2/day$$2.0\;cc/m^2/day$으로 측정되었다.

Keywords

References

  1. S. K. Nho, K. H. Choi, J. W. Kwak, and W. S. Lyoo, Polymer. Sci. Tech., 15, 4 (2004).
  2. J. Wen, V. J. Vasudevan, and G. L. Wilkee, J. Sol-Gel Sci. Technol., 5, 115 (1995). https://doi.org/10.1007/BF00487727
  3. R. Y. M. Huang and J. W. Rhim, Polym. Ind., 30, 129 (1993). https://doi.org/10.1002/pi.4990300119
  4. W. Y. Chuang, T. H. Yong, W. Y. Chiu, and C. Y. Lin, Polymer, 41, 5633 (2000). https://doi.org/10.1016/S0032-3861(99)00818-6
  5. I. Sakurada, Poly(vinyl alcohol) fibers, New York, Marcel Dekker, 1985.
  6. M. H. Jung, J .C. Kim, and J.-H. Chang, Polymer (Korea), 31, 428 (2007)
  7. S. W. Hwang, Y.-C. Chung, B. C. Chun, and S. J. Lee, Polymer (Korea), 28, 374 (2004)
  8. S. K. Ham, M. H. Jung, and J. H. Chang, Polymer (Korea), 30, 298 (2006).
  9. E. K. Choi, H. I. Kim, K. R. Park, and Y. C. Nho, J. Korean Ind. Eng. Chem., 14, 505 (2003).
  10. K. S. Kim and D. L. Cho, Polymer (Korea), 32, 38 (2008).