Effects of the Addition of Metallic Salts and Polyhydric Alcohols on the Formation of Zinc Complex-compound Particle

아연 착화합물 입자형성에 미치는 금속염 및 다가알코올 첨가의 영향

  • In, Se-Jin (Department of Fire and Disaster Protection Engineering, Woosong University)
  • Published : 2012.02.10

Abstract

The experiments have been performed to obtain zinc complex compound with smaller particle size, which is used as a charge control agent in manufacturing toner. Metallic salts and polyhydric alcohols have been studied to investigate their effects on the formation of different sizes of zinc complex-compound particle. Reactants such as zinc chloride and 3,5-di-tert-butyl salicylic acid have been used to form the complex compound. Polyethylene glycol (PEG-300), glycerin and ethylene glycol have been added into the zinc chloride solution beforehand to lower the reaction rate in the formation of zinc complex-compound. Zirconium (IV) oxychloride octahydrate has been mixed in the zinc chloride solution beforehand to restrain crystals from growing. When PEG-300 and zirconium (IV) oxychloride octahydrate are used to lower the reaction rate and to restrain the particle size from growing, the average particle size of zinc complex compound decreases from 5.28 to 1.84 ${\mu}m$, which is 34.9% of 5.28 ${\mu}m$.

본 연구에서는 프린터 토너의 대전량 제어제로 사용되는 아연 착화합물 제조시 금속염과 다가알코올을 첨가함에 따라 변화되는 입자 형태와 평균 입도에 대해 고찰하였다. 아연 착화합물을 제조하기 위해 염화아연과 3,5-di-tert-butyl salicylic acid를 사용하였다. 다가알코올을 첨가함에 따른 입자형태 변화를 확인하기 위해 아연 착화합물 제조시 polyethylene glycol (PEG-300), glycerin 및 ethylene glycol을 첨가하였고, 금속염인 지르코늄 옥시클로라이드를 첨가함으로써 변화되는 입자크기를 확인하였다. 또한 금속염과 다가알코올을 동시에 첨가하여 입도변화를 확인한 결과, 각각 단독으로 첨가했을 때보다 아연 착화합물의 평균 입도가 더 많이 감소하는 것을 확인할 수 있었다. 특히, 지르코늄 착화합물의 함유량이 30 wt%이고 염화아연에 대한 PEG-300의 몰비를 3으로 하였을 때 아연 착화합물의 평균 입도가 1.84 ${\mu}m$로 순수한 아연 착화합물의 평균 입도(5.28 ${\mu}m$)의 34.9%로 가장 많이 감소한 것을 알 수 있었다.

Keywords

References

  1. M. Takeuchi and T. Oguchi, Advanced Technology and Application of Toner, MGM Publishing Co. Ltd., 1, 14, Toykyo (2009).
  2. J. S. Chang, A. J. Kelly, and J. M. Cowley, Handbook of Electrostatic Processes, ed. M. Dekker, Inc. (1995).
  3. J. W. Jeon and S. S. Kim, J. Korean Soc. Dyers & Finishers, 15, 8 (2003).
  4. M. S. Park, Polymer (Korea), 30, 505 (2006).
  5. J. H. Lee, S. N. Lee, and M. S. Park, J. Korean Printing Society, 20, 65 (2002).
  6. N. Iwata, K. Tani, and A. Watada, Micron, 37, 290 (2006). https://doi.org/10.1016/j.micron.2005.08.003
  7. L. De Schamphelaere, Short Run Digital Color Printing, IS+T llth Intemational Congress, Hilton Head/US (1995).
  8. J. Yang, T. J. Wang, and H. He, Ind. Eng. Chem. Res., 42, 5568 (2003). https://doi.org/10.1021/ie0301029
  9. N. Sawatari, M. Fukuda, Y. Taguchi, and M. Tanaka, J. Appl. Poly. Sci., 97, 682 (2005). https://doi.org/10.1002/app.21823
  10. M. P. Stevens, Polymer Chemistry : 3rd edition, Oxford University Press, Oxford (1999).
  11. S. R. Choi, Y. I. Kim, and W. K. Seok, Reaction and Mechanism of Transition Metal Compounds, 141, Freedom academy, Seoul (2003).
  12. R. Bai, L. Zhang, Y. Liu, L. Meng, L. Wang, Y. Wu, W. Li, C. Ge, and L. L. Guyader, C. Chen, Toxicol. Lett., 199, 288 (2010). https://doi.org/10.1016/j.toxlet.2010.09.011
  13. G. S. P. Castle and L. B. Schein, J. Electrost., 36, 165 (1995). https://doi.org/10.1016/0304-3886(95)00043-7
  14. J. H. Anderson, D. E. Bugner, L. P. DeMejo, R. A. Guistina, and N. Zumbulyadis, J. Imaging Sci. Technol., 37, 431 (1993).
  15. J. H. Anderson, J. Imaging Sci. Technol., 38, 378 (1994).
  16. E. J. Gutman and G. C. Hartmann, J. Imaging Sci. Technol., 36, 335 (1992).
  17. A. F. Diaz and D. Fenzel-Alexander, Langmuir, 9, 249 (1993). https://doi.org/10.1021/la00025a047