Study on Anti-biofouling Properties of the Surfaces Treated with Perfluoropolyether (PFPE)

Perfluoropolyether (PFPE)로 처리된 표면의 생물오손 방지 특성 연구

  • Park, Sooin (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kwon, Sunil (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Yeongmin (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Won-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ha, Jong Wook (Korea Research Institute of Chemical Technology) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 박수인 (연세대학교 화공생명공학과) ;
  • 권순일 (연세대학교 화공생명공학과) ;
  • 이영민 (연세대학교 화공생명공학과) ;
  • 고원건 (연세대학교 화공생명공학과) ;
  • 하종욱 (한국화학연구원) ;
  • 이상엽 (연세대학교 화공생명공학과)
  • Published : 2012.02.10

Abstract

Biofouling by marine organisms such as algae and barnacles causes lots of significant problems in marine systems such as a rise of the maintenance-repair cost for the ship and the marine structures. In this work, a fluoropolymer, perfluoropolyether (PFPE), was applied as an anti-biofouling coating material that prevents the adhesion of marine organisms and facilitates the removal of them. Water contact angles of various surfaces were tested to examine the hydrophobicity of the PFPE-modified surface. The PFPE-modified surface showed the water contact angle of $64.5^{\circ}$ which is a remarkable rise from $46.7^{\circ}$ of amine-treated surface. When the substrate was treated with PFPE, the adhesion on the of the barnacle and other marine organisms were repressed around 15% by the enhanced hydrophobicity. In addition, the removal the of the adhered marine organisms were better comparing to that of the surface prepared by PDMS. Surfaces of the substrate treated by PFPE were characterized through physical and chemical methods to analyze the biofouling results. Degree of biomolecular adhesion to the substrate was quantified by the measurement the fluorescence intensity of marine organisms dyed with green fluorescence. PFPE is expected to be applicable not only to anti-biofouling systems but also to medical devices where the prevention of protein adhesion is required.

해조류 및 따개비 등의 해양 생물에 의한 선박 및 해양 구조물 표면의 생물오손(biofouling)은 선박 운영비를 증가시키고 구조물을 유지, 보수하는데 어려움을 가져왔다. 본 논문에서는 이러한 생물오손 방지 또는 생물오손 제거(fouling-release)를 향상시키는 방안으로 불소계 화합물인 perfluoropolyether (PFPE)를 이용하여 해양 생물의 표면 점착을 억제하는 방법이 연구되었다. 우선 생물오손을 예측할 수 있는 지표로서 물방울 접촉각이 측정되었다. 아민그룹으로 처리 된 친수성 표면이 갖는 $46.7^{\circ}$의 물방울 접촉각이 PFPE 처리 후 $64.5^{\circ}$로 상승하여 표면의 혐수성이 증가하였다. 이로 인해 초기에 따개비 포자 및 해양 미생물의 점착이 친수성 카르복실 표면과 비교시 약 15% 억제되었다. 또한 표면 코팅시 평탄면이 형성되어 PDMS로 처리된 표면 굴곡이 있는 표면보다 점착된 미생물의 제거가 용이하였다. 이러한 점착 억제 특성은 물리화학적 방법을 통해 측정된 물성들과 비교, 분석되었으며, 표면에 점착된 미생물의 염색을 통한 형광도 측정을 통해 표면 점착도가 정량적으로 분석되었다. PFPE가 갖는 가공의 용이성과 저독성 특성으로 인해 PFPE는 향후 단기간 생물학적 방오염이 필요한 해양 구조물 이외에 단백질 점착 억제가 요구되는 의료용 장비 등에도 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. R. L. Townsin, Biofouling, 19, 9 (2003).
  2. M. E. Callow and J. A. Callow, Biologist, 49, 1 (2002)
  3. P. J. Molino and R. Wetherbee, Biofouling, 24, 365 (2008). https://doi.org/10.1080/08927010802254583
  4. J. Strand and J. A. Jacobsen, Sci. Total Environ., 350, 72 (2005). https://doi.org/10.1016/j.scitotenv.2005.02.039
  5. D. M. Yebra, S. Kiil, and K. Dam-Johansen, Prog. Organ. Coatings, 50, 75 (2004). https://doi.org/10.1016/j.porgcoat.2003.06.001
  6. N. Aldred and A. S. Clare, Biofouling, 24, 351 (2008). https://doi.org/10.1080/08927010802256117
  7. T. S. Tsapikouni and Y.F. Missirlis, Mater. Sci. Eng. B, 152, 2 (2008). https://doi.org/10.1016/j.mseb.2008.06.007
  8. A. Takahara, Y. Hara, K. Kojio, and T. Kajiyama, Coll. Surf. B, 23, 141 (2002). https://doi.org/10.1016/S0927-7765(01)00231-4
  9. T. Osaki, L. Renner, M. Herklotz, and C. Werner, J. Phys. Chem. B, 110, 12119 (2006). https://doi.org/10.1021/jp061022w
  10. Y. Tang, J. A. Finlay, G. L. Kowalke, A. E. Meyer, F. V. Bright, M. E. Callow, J. A. Callow, D. E. Wendt, and M. R. Detty, Biofouling, 21, 59 (2005). https://doi.org/10.1080/08927010500070935
  11. A. J. Scardino, H. Zhang, D. J. Cookson, R. N. Lamb, and R. de Nys, Biofouling, 25, 757 (2009). https://doi.org/10.1080/08927010903165936
  12. S.-J. Choi, K. Y. Suh, and H. H. Lee, J. Am. Chem. Soc., 130, 6312 (2008). https://doi.org/10.1021/ja801010n
  13. M. J. Owen, Physical Properties of Polymers Handbook, ed. J. E. Mark, 669, AIP Press, New York (1996).
  14. J. A. Howard, V. J. Hoy, D. O'Hagan, and G. T. Smith, Tetrahedron, 52, 12613 (1996). https://doi.org/10.1016/0040-4020(96)00749-1
  15. J.-W. Ha, I. J. Park, and S.-B. Lee, Macromolecules, 38, 736 (2005). https://doi.org/10.1021/ma0488764
  16. M. Yu, G. Gu, W.-D. Meng, and F.-L. Qing, Appl. Surf. Sci., 253, 3669 (2007). https://doi.org/10.1016/j.apsusc.2006.07.086
  17. J. Choi, M. Gawaguchi, T. Kato, and M. Ikeyama, J. Appl. Phys., 99, 08N109/1 (2006).
  18. E. Liu, K. S. Tan, and H. I Tan, J. Nanosci. Nanotech., 8, 2719 (2008).
  19. J. P. Rolland, E. C. Hagberg, G. M. Denison, K. R. Carter, and J. M. Desimone, Angew. Chem. Int. Ed., 43, 5796 (2004). https://doi.org/10.1002/anie.200461122
  20. P. Fabbri, M. Messsori, M. Montecchi, F. Pilati, R. Taurino, C. Tonelli, and M. Toselli, J. Appl. Polym. Sci., 102, 1483 (2006). https://doi.org/10.1002/app.24350
  21. S. Kwon, J.-W. Ha, J. Noh, and S.-Y. Lee, Appl. Surf. Sci., 257, 165 (2010). https://doi.org/10.1016/j.apsusc.2010.06.057
  22. S. Kwon, H. Kim, J.-W. Ha, and S.-Y. Lee, J. Ind. Eng. Chem., 17, 259 (2011). https://doi.org/10.1016/j.jiec.2011.02.018
  23. R. G. Chapman, E. Ostuni, S. Takayama, R. E. Holmlin, L. Yan, and G. M. Whitesides, J. Am. Chem. Soc., 122, 8303 (2000). https://doi.org/10.1021/ja000774f
  24. N. Barbero, L. Napione, P. Quagliotto, S. Pavan, C. Barolo, E. Barni, F. Bussolino, and G. Viscardi, Dyes Pigments, 83, 225 (2009). https://doi.org/10.1016/j.dyepig.2009.04.011
  25. D. L. Schimidt, R. F. Brady Jr., K. Lam, D. C. Schmidt, and M. K. Chaudhury, Langmuir, 20, 2830 (2004). https://doi.org/10.1021/la035385o
  26. S. Feng, Q. Wang, Y. Gao, Y. Huang, and F.-L. Qing, J. Appl. Polym. Sci., 114, 2071 (2009). https://doi.org/10.1002/app.30779
  27. S. Krishnan, R. Ayothi, A. Hexemer, J. A. Finlay, K. E. Sohn, R. Perry, C. K. Ober, E. J. Kramer, M. E. Callow, J. A. Callow, and D. A. Fischer, Langmuir, 22, 5075 (2006). https://doi.org/10.1021/la052978l
  28. R. Holland, T. M Dugdale, R. Wetherbee, A. B. Brennan, J. A. Finlay, J. A. Callow, and M. E. Callow, Biofouling, 20, 323 (2004). https://doi.org/10.1080/08927010400029031
  29. Z. Hu, J. A. Finlay, L. Chen, D. E. Betts, M. A. Hillmyer, M. E. Callow, J. A. Callow, and J. M. DeSimone, Macromol., 42, 6999 (2009). https://doi.org/10.1021/ma901227k
  30. J. C. Yarbrough, J. P. Rolland, J. M. DeSimone, M. E. Callow, J. A. Finlay, and J. A. Callow, Macromolecules, 39, 2521 (2006). https://doi.org/10.1021/ma0524777
  31. N. Kumar, O. Parajulo, A. Gupta, and J. Hahm, Langmuir, 24, 2688 (2008). https://doi.org/10.1021/la7022456