DOI QR코드

DOI QR Code

Fluid-Attenuated Inversion Recovery Hypointensity of the Pulvinar Nucleus of Patients with Alzheimer Disease: Its Possible Association with Iron Accumulation as Evidenced by the $T2^*$ Map

  • Moon, Won-Jin (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Kim, Hee-Jin (Department of Neurology, Hanyang University Medical Center, Hanyang University School of Medicine) ;
  • Roh, Hong Gee (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Choi, Jin Woo (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Han, Seol-Heui (Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine)
  • Published : 2012.12.01

Abstract

Objective: We hypothesized that prominent pulvinar hypointensity in brain MRI represents the disease process due to iron accumulation in Alzheimer disease (AD). We aimed to determine whether or not the pulvinar signal intensity (SI) on the fluid-attenuated inversion recovery (FLAIR) sequences at 3.0T MRI differs between AD patients and normal subjects, and also whether the pulvinar SI is correlated with the $T2^*$ map, an imaging marker for tissue iron, and a cognitive scale. Materials and Methods: Twenty one consecutive patients with AD and 21 age-matched control subjects were prospectively included in this study. The pulvinar SI was assessed on the FLAIR image. We measured the relative SI ratio of the pulvinar to the corpus callosum. The $T2^*$ values were calculated from the $T2^*$ relaxometry map. The differences between the two groups were analyzed, by using a Student t test. The correlation between the measurements was assessed by the Pearson's correlation test. Results: As compared to the normal white matter, the FLAIR signal intensity of the pulvinar nucleus was significantly more hypointense in the AD patients than in the control subjects (p < 0.01). The pulvinar $T2^*$ was shorter in the AD patients than in the control subjects (51.5 ${\pm}$ 4.95 ms vs. 56.5 ${\pm}$ 5.49 ms, respectively, p = 0.003). The pulvinar SI ratio was strongly correlated with the pulvinar $T2^*$ (r = 0.745, p < 0.001). When controlling for age, only the pulvinar-to-CC SI ratio was positively correlated with that of the Mini-Mental State Examination (MMSE) score (r = 0.303, p < 0.050). Conversely, the pulvinar $T2^*$ was not correlated with the MMSE score (r = 0.277, p = 0.080). Conclusion: The FLAIR hypointensity of the pulvinar nucleus represents an abnormal iron accumulation in AD and may be used as an adjunctive finding for evaluating AD.

Keywords

References

  1. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002;297:353-356 https://doi.org/10.1126/science.1072994
  2. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004;5:863-873 https://doi.org/10.1038/nrn1537
  3. Dhenain M, El Tannir El Tayara N, Wu TD, Guegan M, Volk A, Quintana C, et al. Characterization of in vivo MRI detectable thalamic amyloid plaques from APP/PS1 mice. Neurobiol Aging 2009;30:41-53 https://doi.org/10.1016/j.neurobiolaging.2007.05.018
  4. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82:239-259 https://doi.org/10.1007/BF00308809
  5. Kuljis RO. Lesions in the pulvinar in patients with Alzheimer's disease. J Neuropathol Exp Neurol 1994;53:202-211 https://doi.org/10.1097/00005072-199403000-00012
  6. Leuba G, Saini K. Pathology of subcortical visual centres in relation to cortical degeneration in Alzheimer's disease. Neuropathol Appl Neurobiol 1995;21:410-422 https://doi.org/10.1111/j.1365-2990.1995.tb01078.x
  7. Rizzo M, Anderson SW, Dawson J, Myers R, Ball K. Visual attention impairments in Alzheimer's disease. Neurology 2000;54:1954-1959 https://doi.org/10.1212/WNL.54.10.1954
  8. Kaas JH, Lyon DC. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res Rev 2007;55:285-296 https://doi.org/10.1016/j.brainresrev.2007.02.008
  9. Snow JC, Allen HA, Rafal RD, Humphreys GW. Impaired attentional selection following lesions to human pulvinar: evidence for homology between human and monkey. Proc Natl Acad Sci U S A 2009;106:4054-4059 https://doi.org/10.1073/pnas.0810086106
  10. Zarei M, Patenaude B, Damoiseaux J, Morgese C, Smith S, Matthews PM, et al. Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer's disease. Neuroimage 2010;49:1-8 https://doi.org/10.1016/j.neuroimage.2009.09.001
  11. Willinek WA, Kuhl CK. 3.0 T neuroimaging: technical considerations and clinical applications. Neuroimaging Clin N Am 2006;16:217-228, ix https://doi.org/10.1016/j.nic.2006.02.007
  12. Sohn CH, Sevick RJ, Frayne R, Chang HW, Kim SP, Kim DK. Fluid attenuated inversion recovery (FLAIR) imaging of the normal brain: comparisons between under the conditions of 3.0 Tesla and 1.5 Tesla. Korean J Radiol 2010;11:19-24 https://doi.org/10.3348/kjr.2010.11.1.19
  13. Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of $T^{\ast}$-based MR imaging and its special applications. Radiographics 2009;29:1433-1449 https://doi.org/10.1148/rg.295095034
  14. Allkemper T, Schwindt W, Maintz D, Heindel W, Tombach B. Sensitivity of T2-weighted FSE sequences towards physiological iron depositions in normal brains at 1.5 and 3.0 T. Eur Radiol 2004;14:1000-1004 https://doi.org/10.1007/s00330-004-2241-4
  15. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, et al. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 2009;252:165-172 https://doi.org/10.1148/radiol.2522081399
  16. Siemonsen S, Finsterbusch J, Matschke J, Lorenzen A, Ding XQ, Fiehler J. Age-dependent normal values of $T^{\ast}$ and T2' in brain parenchyma. AJNR Am J Neuroradiol 2008;29:950-955 https://doi.org/10.3174/ajnr.A0951
  17. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944 https://doi.org/10.1212/WNL.34.7.939
  18. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189-198 https://doi.org/10.1016/0022-3956(75)90026-6
  19. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43:2412-2414
  20. Peran P, Cherubini A, Luccichenti G, Hagberg G, Demonet JF, Rascol O, et al. Volume and iron content in basal ganglia and thalamus. Hum Brain Mapp 2009;30:2667-2675 https://doi.org/10.1002/hbm.20698
  21. Allkemper T, Tombach B, Schwindt W, Kugel H, Schilling M, Debus O, et al. Acute and subacute intracerebral hemorrhages: comparison of MR imaging at 1.5 and 3.0 T--initial experience. Radiology 2004;232:874-881 https://doi.org/10.1148/radiol.2323030322
  22. Karaarslan E, Arslan A. Perirolandic cortex of the normal brain: low signal intensity on turbo FLAIR MR images. Radiology 2003;227:538-541 https://doi.org/10.1148/radiol.2272020311
  23. Bakshi R, Benedict RH, Bermel RA, Caruthers SD, Puli SR, Tjoa CW, et al. T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 2002;59:62-68 https://doi.org/10.1001/archneur.59.1.62
  24. Milton WJ, Atlas SW, Lexa FJ, Mozley PD, Gur RE. Deep gray matter hypointensity patterns with aging in healthy adults: MR imaging at 1.5 T. Radiology 1991;181:715-719 https://doi.org/10.1148/radiology.181.3.1947087
  25. Drayer BP, Olanow W, Burger P, Johnson GA, Herfkens R, Riederer S. Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 1986;159:493-498 https://doi.org/10.1148/radiology.159.2.3961182
  26. Bowen BC, Pattany PM, Bradley WG, Murdoch JB, Rotta F, Younis AA, et al. MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2000;21:647-658
  27. Cheung G, Gawel MJ, Cooper PW, Farb RI, Ang LC, Gawal MJ. Amyotrophic lateral sclerosis: correlation of clinical and MR imaging findings. Radiology 1995;194:263-270 https://doi.org/10.1148/radiology.194.1.7997565
  28. Harder SL, Hopp KM, Ward H, Neglio H, Gitlin J, Kido D. Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging. AJNR Am J Neuroradiol 2008;29:176-183 https://doi.org/10.3174/ajnr.A0770
  29. Baleydier C, Mauguiere F. Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys. J Comp Neurol 1985;232:219-228
  30. Carrera E, Bogousslavsky J. The thalamus and behavior: effects of anatomically distinct strokes. Neurology 2006;66:1817-1823 https://doi.org/10.1212/01.wnl.0000219679.95223.4c
  31. Yeterian EH, Pandya DN. Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. J Comp Neurol 1985;237:408-426 https://doi.org/10.1002/cne.902370309
  32. Schmahmann JD, Pandya DN. Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP and fluorescent tracer study. J Comp Neurol 1990;295:299-326 https://doi.org/10.1002/cne.902950212
  33. Leh SE, Chakravarty MM, Ptito A. The connectivity of the human pulvinar: a diffusion tensor imaging tractography study. Int J Biomed Imaging 2008;2008:789539
  34. Casanova C, Freeman RD, Nordmann JP. Monocular and binocular response properties of cells in the striate-recipient zone of the cat's lateral posterior-pulvinar complex. J Neurophysiol 1989;62:544-557 https://doi.org/10.1152/jn.1989.62.2.544
  35. Casanova C, Merabet L, Desautels A, Minville K. Higher-order motion processing in the pulvinar. Prog Brain Res 2001;134:71-82
  36. Villeneuve MY, Kupers R, Gjedde A, Ptito M, Casanova C. Pattern-motion selectivity in the human pulvinar. Neuroimage 2005;28:474-480 https://doi.org/10.1016/j.neuroimage.2005.06.015
  37. Johnson MD, Ojemann GA. The role of the human thalamus in language and memory: evidence from electrophysiological studies. Brain Cogn 2000;42:218-230 https://doi.org/10.1006/brcg.1999.1101
  38. Braak H, Braak E. Alzheimer's disease affects limbic nuclei of the thalamus. Acta Neuropathol 1991;81:261-268 https://doi.org/10.1007/BF00305867
  39. Ogren MP, Mateer CA, Wyler AR. Alterations in visually related eye movements following left pulvinar damage in man. Neuropsychologia 1984;22:187-196 https://doi.org/10.1016/0028-3932(84)90061-7
  40. Petersen SE, Robinson DL, Keys W. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J Neurophysiol 1985;54:867-886 https://doi.org/10.1152/jn.1985.54.4.867
  41. Robinson DL, Petersen SE. The pulvinar and visual salience. Trends Neurosci 1992;15:127-132 https://doi.org/10.1016/0166-2236(92)90354-B
  42. Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiol Aging 2004;25:5-18; author reply 49-62 https://doi.org/10.1016/j.neurobiolaging.2003.03.001
  43. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem 1958;3:41-51 https://doi.org/10.1111/j.1471-4159.1958.tb12607.x
  44. Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett 2001;496:1-5 https://doi.org/10.1016/S0014-5793(01)02386-9
  45. Haacke EM, Cheng NY, House MJ, Liu Q, Neelavalli J, Ogg RJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1-25 https://doi.org/10.1016/j.mri.2004.10.001
  46. Ge Y, Jensen JH, Lu H, Helpern JA, Miles L, Inglese M, et al. Quantitative assessment of iron accumulation in the deep gray matter of multiple sclerosis by magnetic field correlation imaging. AJNR Am J Neuroradiol 2007;28:1639-1644 https://doi.org/10.3174/ajnr.A0646
  47. McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA, et al. $T^{\ast}$ and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 2008;70:1614-1619 https://doi.org/10.1212/01.wnl.0000310985.40011.d6
  48. Zhu WZ, Zhong WD, Wang W, Zhan CJ, Wang CY, Qi JP, et al. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 2009;253:497-504 https://doi.org/10.1148/radiol.2532082324
  49. Drayer B, Burger P, Hurwitz B, Dawson D, Cain J. Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJR Am J Roentgenol 1987;149:357-363 https://doi.org/10.2214/ajr.149.2.357
  50. Cross PA, Atlas SW, Grossman RI. MR evaluation of brain iron in children with cerebral infarction. AJNR Am J Neuroradiol 1990;11:341-348
  51. Grisoli M, Piperno A, Chiapparini L, Mariani R, Savoiardo M. MR imaging of cerebral cortical involvement in aceruloplasminemia. AJNR Am J Neuroradiol 2005;26:657-661
  52. Brar S, Henderson D, Schenck J, Zimmerman EA. Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism. Arch Neurol 2009;66:371-374 https://doi.org/10.1001/archneurol.2008.586
  53. Braakman N, Matysik J, van Duinen SG, Verbeek F, Schliebs R, de Groot HJ, et al. Longitudinal assessment of Alzheimer's beta-amyloid plaque development in transgenic mice monitored by in vivo magnetic resonance microimaging. J Magn Reson Imaging 2006;24:530-536 https://doi.org/10.1002/jmri.20675
  54. Jack CR Jr, Garwood M, Wengenack TM, Borowski B, Curran GL, Lin J, et al. In vivo visualization of Alzheimer's amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 2004;52:1263-1271 https://doi.org/10.1002/mrm.20266
  55. Lee SP, Falangola MF, Nixon RA, Duff K, Helpern JA. Visualization of beta-amyloid plaques in a transgenic mouse model of Alzheimer's disease using MR microscopy without contrast reagents. Magn Reson Med 2004;52:538-544 https://doi.org/10.1002/mrm.20196
  56. Vanhoutte G, Dewachter I, Borghgraef P, Van Leuven F, Van der Linden A. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer's disease. Magn Reson Med 2005;53:607-613 https://doi.org/10.1002/mrm.20385
  57. Meadowcroft MD, Connor JR, Smith MB, Yang QX. MRI and histological analysis of beta-amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice. J Magn Reson Imaging 2009;29:997-1007 https://doi.org/10.1002/jmri.21731
  58. Yang X, Sammet S, Schmalbrock P, Knopp MV. Postprocessing correction for distortions in $T^{\ast}$ decay caused by quadratic cross-slice B0 inhomogeneity. Magn Reson Med 2010;63:1258-1268 https://doi.org/10.1002/mrm.22316
  59. Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed 2004;17:433-445 https://doi.org/10.1002/nbm.922

Cited by

  1. Multimodal Magnetic Resonance Imaging in Alzheimer’s Disease Patients at Prodromal Stage vol.50, pp.4, 2016, https://doi.org/10.3233/jad-150353
  2. Patterns of Brain Iron Accumulation in Vascular Dementia and Alzheimer’s Dementia Using Quantitative Susceptibility Mapping Imaging vol.51, pp.3, 2016, https://doi.org/10.3233/jad-151037
  3. Structural MR Imaging in the Diagnosis of Alzheimer's Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives vol.17, pp.6, 2012, https://doi.org/10.3348/kjr.2016.17.6.827
  4. Detection of Low-Signal Pulvinar Areas Using Diffusion-Weighted Imaging in Patients with Dementia Experiencing Visual Hallucinations vol.6, pp.3, 2012, https://doi.org/10.1159/000449409
  5. Tissue magnetic susceptibility mapping as a marker of tau pathology in Alzheimer's disease vol.159, pp.None, 2012, https://doi.org/10.1016/j.neuroimage.2017.08.003
  6. Region-specific susceptibility change in cognitively impaired patients with diabetes mellitus vol.13, pp.10, 2018, https://doi.org/10.1371/journal.pone.0205797
  7. Low Pulvinar Intensity in Susceptibility-Weighted Imaging May Suggest Cognitive Worsening After Deep Brain Stimulation Therapy in Patients With Parkinson's Disease vol.10, pp.None, 2012, https://doi.org/10.3389/fneur.2019.01158
  8. The effect of beta-amyloid and tau protein aggregations on magnetic susceptibility of anterior hippocampal laminae in Alzheimer's diseases vol.244, pp.None, 2012, https://doi.org/10.1016/j.neuroimage.2021.118584