DOI QR코드

DOI QR Code

퇴비화 첨가제의 공기투과성에 대한 분석

Effect On the Air Permeability of Composting Bulking Agent

  • 김병태 (대진대학교 환경공학과)
  • Kim, Byung Tae (Department of Environmental Engineering, Daejin University Kyungki-Do)
  • 발행 : 2012.09.30

초록

국내에서 퇴비화 첨가제로 주로 사용되는 재료로는 톱밥과 목편(woodchip)으로서, 이들 첨가제는 주로 적정 수분함량 및 C/N비의 조절에 주안점을 주고 사용되고 있다. 하지만 톱밥과 목편(woodchip)은 서로 상이한 물리적 특성을 나타내고 있으며, 첨가제의 공기투과성에 대한 연구는 활발히 이루어지지 못하고 있다. 본 연구에서는 퇴비화 첨가제로 주로 사용되고 있는 톱밥과 목편(woodchip)의 혼합비율에 따라 용적 밀도, 수분함량, 공기공극, 입자크기, 공기유속 등이 공기투과성에 미치는 영향을 파악하였다. 모든 첨가제에서 수분함량이 증가함에 따라 공기공극율은 감소하고 입자크기는 증가하였으며, 특히 목편의 혼합비율이 높아짐에 따라 이러한 효과는 더욱 증대되는 경향을 나타내었다. 공기공극율과 수분함량은 선형의 관계로서 공기투과성에 미치는 영향은 매우 유사하게 나타났다. 건조수분함량 0.25~0.43(d.b.)(습윤수분함량으로는 20~30%) 이후의 구간에서는 공기공극율이 낮아짐에도 불구하고 압력손실이 감소함으로써 공기투과성이 개선되는 현상을 보이고 있다. 특히 입자크기가 5 mm로 커질 때까지 압력손실은 지수적으로 감소하여 공기투과성이 현저히 개선되고 있다. 이는 수분함량 증가에 따라 미세입자가 입단화됨으로써 대공극이 증가하고 이에 따라 공기이동성이 원활해 졌기 때문으로 여겨진다. 따라서 첨가제의 입자크기가 공기공극율이나 수분함량에 비하여 공기투과성에 미치는 영향이 매우 높았으며, 퇴비화시에는 초기 입자크기를 5 mm 이상으로 조절하는 것이 적합하다.

Common bulking agents in composting system include woody materials such as sawdust and woodchips. These bulking agents are mainly used for the purpose of the proper control of C/N ratio and moisture content in the composting. The topic for the effect on air permeability of bulking agents has far received relatively little attention in the composting field. This study investigated the effect of bulk density, moisture content, air-filled porosity, particle size and air flow rate on air permeability of several mixture ratios of sawdust and woodchip bulking agent. Increasing the moisture contents, the air-filled porosity was decreased and the particle size was increased for all kinds of bulking agent mixtures. Especially, with the increasing of mixing ratio of woodchip, these effects were sharply magnified. The air permeability respond to air-filled porosity was very similar to that for moisture content which was anticipated the linear relationship between air-filled porosity and moisture content. Above the region of moisture content 0.25 or 0.43(d.b.)(20 or 30% w.b.), the pressure drop decreased even though air-filled pore spaces were filling with water. Especially, to the particle size of 5 mm the pressure drop was decreased exponentially, so the air permeability was dramatically improved. By the water had the role of binding of the small particles, the macropores less resistances to air flow were created in the matrix. The effect of particle size on air permeability was much stronger than that of air-filled porosity or moisture content. And it is needed the preparing of initial particle size above 5 mm for efficient composting.

키워드

참고문헌

  1. 김병태,"습윤 및 건조과정에서의 톱밥내 물리적 성상과 공기투과성의 변화", 유기물자원화, 유기성자원학회지, 17(4), pp. 103-111.(2009).
  2. Das, K. and Keener, H. M., "Moisture effect on compaction and permeability in composts", Journal of Environmental Engineering, 123(3), pp. 275-281. (1997). https://doi.org/10.1061/(ASCE)0733-9372(1997)123:3(275)
  3. Higgins, A. J., Chen, S. and Singley, M. E., "Airflow resistance in sewage sludge composting aeration systems", Trans. ASAE., 24(4), pp. 1010-1014,1018. (1982).
  4. Van der Sman, R. G. M., "Prediction of air flow through a vented box by the Darcy-Forchheimer equation", J. Food Engineering, 55, pp. 49-57. (2002). https://doi.org/10.1016/S0260-8774(01)00241-2
  5. Haque, E., Ahmed, Y. N. and Deyoe, C. M., "Static pressure drop in a fixed bed of grain as affected by grain moisture content", Trans. ASAE., 25(4), pp. 1095-1098.(1982). https://doi.org/10.13031/2013.33675
  6. Siebenmorgen, T. J. and Jindal, V. K., "Airflow resistance of rough rice as affected by moisture content, fines concentration and bulk density", Trans. ASAE., 30(4), pp. 1138-1143.(1987). https://doi.org/10.13031/2013.30533
  7. Grama, S. N., Bern, C. J. and Hurburgh, C. R., "Airflow resistance of mixtures of shelled corn and fines", Trans. ASAE., 27(1), pp. 268-272. (1984). https://doi.org/10.13031/2013.32774
  8. Kristensen, E. F. and Kofman, P. D., "Pressure resistance to air flow during ventilation of different types of wood fuel chip", Biomass & Bioenergy, 18, pp. 175- 180. (2000). https://doi.org/10.1016/S0961-9534(99)00089-6
  9. Endo, Y., Chen, D. and Pui, D. Y. H., "Air and water permeation resistance across dust cakes on filters-effects of particle polydispersity and shape factor", Powder Technology, 118, pp. 24-31. (2001). https://doi.org/10.1016/S0032-5910(01)00291-1
  10. Chung, D. S., Maghirang, R. G., Kim, Y. S. and Kim, M. S., "Effects of moisture and fine material on static pressure drops in a bed of grain sorghum and rough rice", Transactions of the ASAE, 44(2), pp. 331- 336. (2001).
  11. Rough, S. L., Bridgewater, J. and Wilson, D. I., "In situ measurements of porosities of alumina pastes", Powder Technology, 123, pp. 262-274. (2002). https://doi.org/10.1016/S0032-5910(01)00464-8
  12. Nicolai, R. E. and Janni, K. A., "Determining pressure drop through compost-wood chip biofilter media", Paper number:014080 ASAE. Annual International Meeting, Sacramento, July 30-August 1, pp. 1-7. (2001).
  13. Van Ginkel, J. T., Van Haneghem, I. A. and Raats, P. A. C., "Physical properties of composting material: gas permeability, oxygen diffusion coefficient and thermal conductivity", Biosystems Engineering, 81(1), pp. 113-125. (2002). https://doi.org/10.1006/bioe.2001.0009
  14. Richard, T. L., Hamelers, H. V. M., Veeken, A. H. M. and Silva, T., "Moisture relationships in composting processes", Compost Science and Utilization, 10(4), pp. 286-302. (2002). https://doi.org/10.1080/1065657X.2002.10702093
  15. Richard, T. L., Veeken, A. H. M., Wilde, V. De. and Hamelers, H. V. M., "Air-filled porosity and permeability relationships during solid state fermentation", Biotechnology Progress, 20(5), pp. 1372- 1381. (2004). https://doi.org/10.1021/bp0499505
  16. Hamelers, H. V. M., A mathematical model for composting kinetics, Ph.D. Dissertation, Washington University. (2001).
  17. Richard, T. L. and Kim, B. T., "Biodegradation impacts on fluid transport properties of organic porous media", Articles in Proceeding of the 2003 annual meeting on CD, Institute of Biological Engineering, Athens, Georgia, Jan17-19, pp. 1-13. (2003).
  18. 김용성, 김병태, "수직형 퇴비화 반응조에서 침하현상에 의한 FAS와 공기투과성의 변화특성연구", 한국폐기물학회지, 24(8), pp. 696-703. (2007).
  19. Richard, T. L. and Steenhuis, T. S., "Tile drain sampling of preferential flow on a field scale, In: P.F. German(Editor), Rapid and far reaching hydrologic process of the vadose zone", Journal of Contaminant Hydrology, 3, pp. 307-325. (1988). https://doi.org/10.1016/0169-7722(88)90038-1