DOI QR코드

DOI QR Code

Biohydrogen Production from Sugar Manufacturing Wastewater and Analysis of Microbial Diversity

제당폐수를 이용한 수소생산과 미생물의 군집해석

  • Lee, Heesu (Department of Environmental Engineering Seoul National University of Science & Technology) ;
  • Lee, Tae-Jin (Department of Environmental Engineering Seoul National University of Science & Technology)
  • 이희수 (서울과학기술대학교 환경공학과) ;
  • 이태진 (서울과학기술대학교 환경공학과)
  • Published : 2012.09.30

Abstract

Biohydrogen production and analysis of microbial community were attempted from the sugar manufacturing wastewater with anaerobic fermentation process. Addtion of nutrients ($N{\cdot}P$) into sugar manufacturing wastewater stimulates hydrogen production from 9.53 to $26.67m{\ell}$ $H_2/g$ COD. Butyric acid, acetic acid, lactic acid, and propionic acid were detected in the sample of the anaerobic fermentation process. Butyric acid/Acetic acid(B/A) ratio was increased 0.50 to 0.92 according to the nutrients addtion into the wastewater. Microbial community was analyzed as Clostridium sp. in the phylum of Firmicutes and Klebsiella sp., Erwinia sp., and enterobacter sp. of the class of $\gamma$-Proteobacteria. As the improvement of hydrogen production, Erwinia sp. was decreased and Klebsiella sp. was increased.

생물학적 혐기발효를 이용하여 제당폐수로부터 바이오 수소가스의 생산 수율을 알아보고, 이 반응에 관여하는 미생물의 군집양상을 살펴보았다. 제당폐수 내 영양염류($N{\cdot}P$)의 공급함에 따라 수소발생량이 9.53 에서 $26.67m{\ell}$ $H_2/g$ COD로 증가하였다. 혐기발효과정에서 butyric acid, acetic acid, lacticacid, 그리고 propionic acid이 검출되었다. Butyric acid/acetic acid(B/A)비는 제당폐수에 영양염류가 공급됨에 따라 0.50에서 0.92로 증가 하였으며, B/A비가 높을수록 수소생산량이 증가하였다. 제당폐수의 발효과정에서 나타나는 미생물 군집은 Firmicutes문에는 Clostridium 속으로 나타났으며 $\gamma$-Proteobacteria 강에는 Klebsiella 속, Erwinia 속, 그리고 Eenterobacter 속이 검출되었다. 또한 수소 생성이 활성화 되면서 Erwinia 속은 위축되고 Klebsiella 속이 많아지는 것을 알 수 있었다.

Keywords

References

  1. Momirlan, M. and Veziroglu, T. N., "Recent directions of world hydrogen production", Renew. Sust. Energ. Rev., 3, pp. 219-231. (1999). https://doi.org/10.1016/S1364-0321(98)00017-3
  2. Debabrata, D., Veziroglu, T. N., "Hydrogen production by biological processes: a survey of literature", International Journal of Hydrogen Energy, 26, pp .13-28. (2001). https://doi.org/10.1016/S0360-3199(00)00058-6
  3. Rifkin, J., "The hydrogen economy: the worldwide energy web and the redistribution of the power on earth", Penguin Putnam, New Work, NY US, pp. 15-17. (2002).
  4. Rifkin, J., "The hydrogen economy", Putnam Pub Group. (2003).
  5. Benemann, J., "Hydrogen biotechnology progress and prospects", Nature Biotechnology, 14, pp. 1101-1103. (1996). https://doi.org/10.1038/nbt0996-1101
  6. Zaborsky, O. R., "Biohydrogen", Plenum Press, New York, pp. 10-18. (1998).
  7. Levin, D. B., Pitt, L. and Love, M., "Biohydrogen production: prospects and limitations to practical application", Int. J. hydrogen energy, 29. pp. 173-185. (2004). https://doi.org/10.1016/S0360-3199(03)00094-6
  8. Okamoto, M., T. Miyahara, O. Mizuno and T. Noike, "Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes", Water Sci. Tech. 41(3), pp. 25-32. (2000).
  9. Narendra, K., Debabrata, D., "Enhancement of hydrogen production by Enterobactor cloacae IIT-BT 08", Process Biochemistry, 35, pp. 589-593. (2000). https://doi.org/10.1016/S0032-9592(99)00109-0
  10. Ueno, Y., Haruta, S., Ishii, M. and Igarashi, Y., "Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora", Journal of Bioscience and Bioengineering, 92(4), pp. 397-400. (2001). https://doi.org/10.1016/S1389-1723(01)80247-4
  11. Vreas, L., Forney, L., Daae, F. L., and Torsvik, V., "Distribution of bacterioplankton in meromictic lake selenvannet, as determined by denaturing gradient gel electrophoresis of PCR-Amplified gene fragments coding for 16S rRNA", Appl. Environ. Microbiol., 63(9), pp. 3367-3373. (1997).
  12. Hollibaugh, J. T., Bano, N. and Ducklow, H., "Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria", Appl. Environ. Microbiol., 68(3), pp. 1478-1484. (2002). https://doi.org/10.1128/AEM.68.3.1478-1484.2002
  13. Mannix Salvador Pedro, Shin Haruta, Masaru Hazaka, Rumiko Shimada, Chie Yoshida, Koichiro Hiura, Masaharu Ishii, and Yasuo Igarashi, "Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter", Journal of Bioscience and Bioengineering, 91(2), pp. 159-165. (2001). https://doi.org/10.1016/S1389-1723(01)80059-1
  14. Logan, B. E., OH, S. E., Kim, I. S., Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers", Environ. Sci. Technol., 36, pp. 2530-2535. (2002). https://doi.org/10.1021/es015783i
  15. Fang, H. H. P. and H. Liu, "Effect of pH on hydrogen production from glucose by a mixed culture", Bioresource Technol, 82, pp. 87-93. (2002). https://doi.org/10.1016/S0960-8524(01)00110-9
  16. Chen, C.-C. and Lin, C.-Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor", Adv. Environ. Res., 7, pp. 695-699. (2003). https://doi.org/10.1016/S1093-0191(02)00035-7
  17. Dubois, M., Gilles, K. A., "Hamilton, J. K., Rebers, P. A., and Smith, F., "Colorimetric method for determination of sugars and related substances", Analytical Chemistry, 28(3), pp. 350-356. (1956). https://doi.org/10.1021/ac60111a017
  18. Miller, G. L., "Use of dinitrosalicylic acid reagent for determination of reducing sugar", Anal. Chem., 31, pp. 426-428. (1959). https://doi.org/10.1021/ac60147a030
  19. Lowry, O. H., Rasebrough, N. J., Farr, A. L. and Randall, R. J., "Protein measurement with Folin phenol reagent", J. Biol. Chem., 193, pp. 265-275. (1951).
  20. APWA, AWWA, WPCF, "Standard methods for the examination of water and wastewater", 20th ed. (1999).
  21. Minnan, L., Jinli, H., Xuijuan, W., Jinzao, C., Chuannan, L., Fengzhang, Z. Liangshu, X., "Isolation and characterization of a high H2-Producing strain Klebsiella oxytoca HP1 from a hot spring", Research In Microbiology, 156, pp. 76-81. (2005). https://doi.org/10.1016/j.resmic.2004.08.004
  22. Nguyen, T. A. D., Kim, Y. P., Kim, M. S., Oh, Y. K., Sim, S. J., "Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation", Int. J. Hydrogen Energy, 33(5), pp. 1438-1488. (2008). https://doi.org/10.1016/j.energy.2008.05.006
  23. Logan, B. E., OH, S. E., Kim, I. S., Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers", Environ. Sci. Technol., 36, pp. 2530-2535. (2002). https://doi.org/10.1021/es015783i
  24. Samir Kumar Khanal, Wen-Hsing Chen, Ling Li, Shihwn Sung, "Biological hydrogen production: effects of pH and intermediate products", Int. J. Hydrogen Energy, 29, pp. 1123-1131. (2004).
  25. Ginkel, S. V and Sung, S. H., "Biohydrogen production as a function of pH and substrate concentration", Environ. Sci. Technol, 35, pp. 4726-4730. (2001). https://doi.org/10.1021/es001979r
  26. Vreas, L., Forney, L., Daae, F. L., and Torsvik, V., "Distribution of bacterioplankton in meromictic lake selenvannet, as determined by denaturing gradient gel electrophoresis of PCR-Amplified gene fragments coding for 16S rRNA", Appl. Environ. Microbiol., 63(9), pp. 3367-3373. (1997).
  27. Hollibaugh, J. T., Bano, N. and Ducklow, H., "Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria", Appl. Environ. Microbiol., 68(3), pp. 1478-1484,. (2002). https://doi.org/10.1128/AEM.68.3.1478-1484.2002
  28. Mannix Salvador Pedro, Shin Haruta, Masaru Hazaka, Rumiko Shimada, Chie Yoshida, Koichiro Hiura, Masaharu Ishii, and Yasuo Igarashi, "Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter", J. of Biosci. Bioeng., 91(2), pp. 159-165. (2001). https://doi.org/10.1016/S1389-1723(01)80059-1
  29. Boillinger, R., H. Zurrer and R. Bachofen, "Photoproduction of molecular hydrogen from waste of a sugar refinery by photosynthetic bacteria", Appl. Microbial. Biotechnol. 23, pp. 147-151. (1985). https://doi.org/10.1007/BF00938968
  30. Auch, A. F., Henz S. R., Holland, B. R., and Goker, M., "Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences", BioMed Central Ltd. (2006).
  31. Hung, C. H., Cheng, C. H., Cheng, L. H., Liang, C. M., Lin, C. Y., "Application of Clostridium-specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community", Int. J Hydrogen Energy, 33(5), pp. 1586-1592. (2008). https://doi.org/10.1016/j.ijhydene.2007.09.037
  32. Felgenstein, J., "Confidence limits on phylogenetics: an approach using the bootstrap", Evolution 39, pp. 783-791. (1985). https://doi.org/10.2307/2408678
  33. Lay, J.J., Y.Y. Li, T. Noike, "The influences of pH and ammonia concentration on the methane production in high-solids digestion", Wat. Environ. Res., 70(5), pp. 1075-1082. (1998). https://doi.org/10.2175/106143098X123426
  34. 전윤선, 조윤아, 이태진, "두부 폐수를 이용한 수소생산 및 미생물의 군집 변화", 대한환경공학회, 31(2), pp. 139-146. (2009).
  35. Kapdan Kargi, "Bio-hydrogen production from waste materials", Enzyme and Microbial Technology 38, pp. 569-582. (2006). https://doi.org/10.1016/j.enzmictec.2005.09.015
  36. Panagiotopoulos, J., Bakker, R., de Vrije, T., Claassen, P., Koukios, E., Stolten, D., Grube, T.,, "Biological Hydrogen Production from Sucrose and Sugar Beet by Caldicellulosiruptor Saccharolyticus", Schriften des Forschungszentrums Julich / Energy & Environment, 78(2). (2010).
  37. Yetisa, M., Gunduza, U., Eroglub, I., Yucela, M, Turkerc, L.,, "Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001", Int. J of Hydrogen Energy 25, pp. 1035-1041. (2005).
  38. 김미선, "생물학적인 방법에 의한 수소생산", 수소에너지정보 제10호. (2005).
  39. 신종환, 박태현, "생물학적 수소생산 공정", Korean Chem. Eng. Res., 44(1),pp. 16-22. (2006).
  40. 김미선 외 4, "Clostridium butyricum NCIB 9576에 의한 당으로부터 혐기적 수소생산", Kor. J. Appl. Microbiol. Biotechnol. 27(1), pp. 62-69. (1999).