DOI QR코드

DOI QR Code

미세조류로부터 바이오 수소 생산을 위한 산(acid) 전처리의 최적화

Optimization of bio-$H_{2}$ production from acid pretreated microalgal biomass

  • 윤여명 (한국과학기술원 건설 및 환경공학과) ;
  • 정경원 (한국과학기술원 건설 및 환경공학과) ;
  • 김동훈 (한국에너지기술연구원 청정연료연구단) ;
  • 오유관 (한국에너지기술연구원 청정연료연구단) ;
  • 신항식 (한국과학기술원 건설 및 환경공학과)
  • Yun, Yeo-Myeong (Department of Civil and Environmental Engineering, KAIST) ;
  • Jung, Kyung-Won (Department of Civil and Environmental Engineering, KAIST) ;
  • Kim, Dong-Hoon (Clean Fuel Center, Korea Institute of Energy Research) ;
  • Oh, You-Kwan (Clean Fuel Center, Korea Institute of Energy Research) ;
  • Shin, Hang-Sik (Department of Civil and Environmental Engineering, KAIST)
  • 발행 : 2012.03.31

초록

본 연구에서는 제 3세대 바이오매스 미세조류를 이용한 혐기성 암발효 수소 생산 과정에서 산 전처리의 최적화를 통계학적 실험방법인 반응표면법을 적용하여 도출 하였다. 1~3% (v/w)의 산 농도와 10~60 min 전처리 시간을 최적화 실험 범위로 설정하였으며 기질농도 76 g dcw/L와 초기 pH는 7.4로 고정하였고 수소발효 운전 중에 pH는 조절하지 않았다. 최적화 결과 HCl 1.2%와 반응시간 48 min에서 가장 높은 수소전환율인 36.8 mL $H_{2}/g$ dcw을 얻었으며 이때 가용화율은 18.9%로 나타났다. 정확도는 $R^{2}$=0.95로 매우 정확한 상관계수를 보였고 ANOVA test를 통해 예측된 수소전환율에 관련한 경험식은 a quadratic polynomial equation 으로 나타났으며 반응시간보다 산주입농도가 수소 생산에 큰 영향을 미치는 것으로 나타났다.

In this study, dark fermentative hydrogen production (DFHP) from acid pretreated microalgal biomass was optimized with via statistical experimental design. Acid concentration and reaction time were varied from 0.1 to 3% (v/w) and 10 to 60 min with substrate concentration of 76 g dry cell weight (dcw)/L and initial pH of 7.4, respectively. During the fermentation, pH was not controlled. The optimal condition was found that at $H_{2}$ yield reached to 37.3 mL $H_{2}/g$ dcw at 1.2% HCl and 48 min. Through regression analysis, it was found that $H_{2}$ yield was well fitted by a quadratic polynomial equation ($R^{2}$=0.95). HCl concentration was the most significant factor influencing DFHP. The results of ANOVA verify that HCl concentration was the most significant factor influencing DFHP.

키워드

참고문헌

  1. Singh, A, Nigam, P. S. and Murphy, J. D., "Renewable fuels from algae: An answer to debatable land based fuels", Bioresource Technol., 102, pp. 10-16. (2010).
  2. Brennan, L. and Owende, P., "Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products", Renewable and sustainable energy reviews, 14, pp. 557-577. (2010). https://doi.org/10.1016/j.rser.2009.10.009
  3. Joseph, F., Jason H., Davi,d T., Stephen, P. and Peter, H., "Land clearing and the biofuel carbon debt", Science, 19, pp. 1235-1237. (2008).
  4. Wijffel, R. H. and Barbosa, M. J., "An outlook on microalgal biofuels", Science, 329, pp. 796-799. (2010). https://doi.org/10.1126/science.1189003
  5. Berndes, G., Hoogwijk, M. and Van Den Broek, R., "The Contribution of Biomass in the Future Global Energy Supply: a Review of 17 Studies", Biomass and Bioenergy, 25(1), pp. 1-28. (2003). https://doi.org/10.1016/S0961-9534(02)00185-X
  6. Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J. and Eaton-Rye, J. J., "Anaerobic digestion of microalgae residues resulting from the biodiesel production process", Applied Energy, 88, pp. 3454-3463. (2011). https://doi.org/10.1016/j.apenergy.2010.10.020
  7. Yang, Z., Guo R., Xu, X., Fan, X. and Luo S., "Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment", Int. J. Hydrogen Energy, 35, pp. 9618-9623. (2010). https://doi.org/10.1016/j.ijhydene.2010.07.017
  8. Bruno, S., Nicolas, B. and Olivier, B., "Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable", Biotechnol. Advance, 27, pp. 409-416. (2009). https://doi.org/10.1016/j.biotechadv.2009.03.001
  9. Xueqing, S., Jung, K., Kim, D., Ahn, Y. and Shin, H., "Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures", Int. J. Hydrogen Energy, 11, 5857-5864. (2011).
  10. Hawkes, F., Hussy, I., Kyazze, G., Dinsdale, R. and Hawkes, D., "Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress", Int. J. Hydrogen Energy, 32, 172-184. (2007). https://doi.org/10.1016/j.ijhydene.2006.08.014
  11. Kim, D. H., Kim, S. H., Kim, H. W., Kim, M. S. and Shin, H. S., "Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance", Bioresource Technol., 102, pp. 8501-8506. (2011). https://doi.org/10.1016/j.biortech.2011.04.089
  12. Jung, K. W., Kim, D. H., Kim, H. W. and Shin, H. S., "Optimization of combined (acid+thermal) pretreatment for fermentative hydrogen production from Laminaria japonica using response surface methodology (RSM)", Int. J. Hydrogen Energy, 36, pp. 9626-9631. (2011). https://doi.org/10.1016/j.ijhydene.2011.05.050
  13. Jung, K. W., Kim, D. H. and Shin, H. S., "Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor", Int. J. Hydrogen Energy, 35, pp. 13370-13378. (2010). https://doi.org/10.1016/j.ijhydene.2009.11.120
  14. Zhang, G., Yang, J., Liu, H. and Zhang, J., "Sludge ozonation: Disintegration, supernatant changes and mechanisms", Bioresour. Technol., 100, pp. 1505-1509. (2009). https://doi.org/10.1016/j.biortech.2008.08.041
  15. Oh, S. E., Ginkel, S. V. and Logan, B. E., "The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production", Environ Sci Technol., 37, pp. 5186-5190. (2003). https://doi.org/10.1021/es034291y
  16. Lay, J. J., Lee, Y. J. and Noike, T., "Feasibility of biological hydrogen production from organic fraction of municipal solid waste", Water Res., 33, pp. 2579-2586. (1999). https://doi.org/10.1016/S0043-1354(98)00483-7
  17. APHA, AWWA and WEF, Standard methods for the examination of water and wastewater, 20th ed., USA American Public Health Association, Washington, DC. (1998).
  18. Jones, D. B., Factors for converting percentages of nitrogen in foods and feeds into percentages of protein. (1941).
  19. Merrill, A. L. and Watt, B. K., Energy value of foods-Basis and derivation, U.S. Department of Agriculture. (1973).
  20. Schakel, S. F., Buzzard, I. M. and Gebhardt, S. E., "Procedures for Estimating Nutrient Values for Food Composition Databases", J. of Food Composition and Analysis, 10, pp. 102-114. (1999).
  21. Jo, J. H., Lee, D. S., Park, D. H., Choe, W. S. and Park, J. M., "Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods.", Bioresource Technol., 99, pp. 2061-2066. (2008). https://doi.org/10.1016/j.biortech.2007.04.027
  22. Yun, Y. M., Jung, K. W., Kim, D. H., Oh, Y. K. and Shin, H. S, "Microalgal biomass as a feedstock for bio-hydrogen production", Int. J. Hydrogen Energy (In press). (2012).