DOI QR코드

DOI QR Code

Pathophysiology of Gastric MALT Lymphoma

위 MALT 림프종의 병태생리

  • Park, Gyeongsin (Department of Hospital Pathology, The Catholic University of Korea College of Medicine) ;
  • Kang, Chang Suk (Department of Hospital Pathology, The Catholic University of Korea College of Medicine)
  • 박경신 (가톨릭대학교 의과대학 병원병리학교실) ;
  • 강창석 (가톨릭대학교 의과대학 병원병리학교실)
  • Published : 2012.12.01

Abstract

Early gastric mucosa-associated lymphoid tissue (MALT) lymphoma is considered as an antigen-dependent disease associated with long standing antigenic stimulation by Helicobacter pylori (H. pylori) which induces chronic immune response and lymphoid tissue development at the gastric mucosa normally devoid of lymphoid tissue. With disease progression, antigen-independent clones occur via genetic alterations inducing aberrant activation of nuclear factor ${\kappa}B$ $(NF-{\kappa}B)$ pathway which is essential for regulation of normal lymphocyte development and activation. Four major translocations, including t (11;18)/API2-MALT1, t (1;14)/BCL10-IGH, t (14;18)/(IGH-MALT1 and t (3;14)/FOXP1-IGH, occur mutually exclusively and lead to generation of cIAP2-MALT1 fusion protein or overexpression of BCL10, MALT1 and Foxp1. Translocation t (3;14)(q27;q32)/BCL6-IGH and t (1;2)(p22;p12)/$BCL10-IG{\kappa}L$ also occur in some MALT lymphomas. Mutational inactivation of A20, global $NF-{\kappa}B$ inhibitor, involve the development of especially translocation-negative MALT lymphoma. Downstream effects of most genetic alteration converge on the same $NF-{\kappa}B$ mediated oncogenic pathway. This review discusses the current advances in the pathophysiology underlying the development of gastric MALT lymphoma and its progression.

Keywords

References

  1. Morse HC 3rd, Kearney JF, Isaacson PG, Carroll M, Fredrickson TN, Jaffe ES. Cells of the marginal zone: origins, function and neoplasia. Leuk Res 2001;25:169-178. https://doi.org/10.1016/S0145-2126(00)00107-7
  2. Suarez F, Lortholary O, Hermine O, Lecuit M. Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 2006;107:3034-3044. https://doi.org/10.1182/blood-2005-09-3679
  3. Kim JM, Ko YH, Lee SS, et al. WHO classification of malignant lymphomas in Korea: report of the third nation-wide study. Korean J Pathol 2011;45:254-260. https://doi.org/10.4132/KoreanJPathol.2011.45.3.254
  4. Zucca E, Bertoni F, Roggero E, et al. Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N Engl J Med 1998;338:804-810. https://doi.org/10.1056/NEJM199803193381205
  5. Enno A, O'Rourke J, Braye S, Howlett R, Lee A. Antigen-dependent progression of mucosa-associated lymphoid tissue (MALT)-type lymphoma in the stomach: effects of antimicrobial therapy on gastric MALT lymphoma in mice. Am J Pathol 1998;152:1625-1632.
  6. Neyt K, Perros F, GeurtsvanKessel CH, Hammad H, Lambrecht BN. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 2012;33:297-305. https://doi.org/10.1016/j.it.2012.04.006
  7. Ferreira M, Domingues RG, Veiga-Fernandes H. Stroma cell priming in enteric lymphoid organ morphogenesis. Front Immunol 2012;3:219.
  8. D'Elios MM, Appelmelk BJ, Amedei A, Bergman MP, Del Prete G. Gastric autoimmunity: the role of Helicobacter pylori and molecular mimicry. Trends Mol Med 2004;10:316-323. https://doi.org/10.1016/j.molmed.2004.06.001
  9. Craig VJ, Arnold I, Gerke C, et al. Gastric MALT lymphoma B cells express polyreactive, somatically mutated immuno-globulins. Blood 2010;115:581-591. https://doi.org/10.1182/blood-2009-06-228015
  10. Endres R, Alimzhanov MB, Plitz T, et al. Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J Exp Med 1999;189:159-168. https://doi.org/10.1084/jem.189.1.159
  11. Ansel KM, Ngo VN, Hyman PL, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000;406:309-314. https://doi.org/10.1038/35018581
  12. Geurtsvan Kessel CH, Willart MA, Bergen IM, et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J Exp Med 2009;206:2339-2349. https://doi.org/10.1084/jem.20090410
  13. Winter S, Loddenkemper C, Aebischer A, et al. The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pyloriinduced inflammation. J Mol Med (Berl) 2010;88:1169-1180. https://doi.org/10.1007/s00109-010-0658-6
  14. Peduto L, Dulauroy S, Lochner M, et al. Inflammation recapitulates the ontogeny of lymphoid stromal cells. J Immunol 2009;182:5789-5799. https://doi.org/10.4049/jimmunol.0803974
  15. Burrell BE, Ding Y, Nakayama Y, et al. Tolerance and lymphoid organ structure and function. Front Immunol 2011;2:64.
  16. Vondenhoff MF, Greuter M, Goverse G, et al. LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J Immunol 2009;182:5439-5445. https://doi.org/10.4049/jimmunol.0801165
  17. Wotherspoon AC, Doglioni C, Diss TC, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 1993;342:575-577. https://doi.org/10.1016/0140-6736(93)91409-F
  18. Copie-Bergman C, Gaulard P, Lavergne-Slove A, et al. Proposal for a new histological grading system for post- treatment evaluation of gastric MALT lymphoma. Gut 2003;52:1656. https://doi.org/10.1136/gut.52.11.1656
  19. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984;1:1311-1315.
  20. Eidt S, Stolte M, Fischer R. Helicobacter pylori gastritis and primary gastric non-Hodgkin's lymphomas. J Clin Pathol 1994;47:436-439. https://doi.org/10.1136/jcp.47.5.436
  21. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991;338:1175-1176. https://doi.org/10.1016/0140-6736(91)92035-Z
  22. Nakamura S, Aoyagi K, Furuse M, et al. B-cell monoclonality precedes the development of gastric MALT lymphoma in Helicobacter pylori-associated chronic gastritis. Am J Pathol 1998;152:1271-1279.
  23. Ye H, Liu H, Raderer M, et al. High incidence of t(11;18) (q21;q21) in Helicobacter pylori-negative gastric MALT lymphoma. Blood 2003;101:2547-2550. https://doi.org/10.1182/blood-2002-10-3167
  24. Liu H, Ye H, Ruskone-Fourmestraux A, et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 2002;122:1286-1294. https://doi.org/10.1053/gast.2002.33047
  25. Hussell T, Isaacson PG, Crabtree JE, Spencer J. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet 1993;342:571-574. https://doi.org/10.1016/0140-6736(93)91408-E
  26. Wundisch T, Mosch C, Neubauer A, Stolte M. Helicobacter pylori eradication in gastric mucosa-associated lymphoid tissue lymphoma: results of a 196-patient series. Leuk Lymphoma 2006;47:2110-2114. https://doi.org/10.1080/10428190600783536
  27. Wundisch T, Thiede C, Morgner A, et al. Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication. J Clin Oncol 2005;23:8018-8024. https://doi.org/10.1200/JCO.2005.02.3903
  28. Nakamura S, Yao T, Aoyagi K, Iida M, Fujishima M, Tsuneyoshi M. Helicobacter pylori and primary gastric lymphoma: a histopathologic and immunohistochemical analysis of 237 patients. Cancer 1997;79:3-11. https://doi.org/10.1002/(SICI)1097-0142(19970101)79:1<3::AID-CNCR2>3.0.CO;2-P
  29. Zullo A, Hassan C, Cristofari F, et al. Effects of Helicobacter pylori eradication on early stage gastric mucosa-associated lymphoid tissue lymphoma. Clin Gastroenterol Hepatol 2010;8:105-110. https://doi.org/10.1016/j.cgh.2009.07.017
  30. Mazzucchelli L, Blaser A, Kappeler A, et al. BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J Clin Invest 1999;104:R49-R54. https://doi.org/10.1172/JCI7830
  31. Achuthan R, Bell SM, Leek JP, et al. Novel translocation of the BCL10 gene in a case of mucosa associated lymphoid tissue lymphoma. Genes Chromosomes Cancer 2000;29:347-349. https://doi.org/10.1002/1098-2264(2000)9999:9999<::AID-GCC1048>3.0.CO;2-B
  32. Hamoudi RA, Appert A, Ye H, et al. Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism. Leukemia 2010;24:1487-1497. https://doi.org/10.1038/leu.2010.118
  33. Deutsch AJ, Aigelsreiter A, Staber PB, et al. MALT lymphoma and extranodal diffuse large B-cell lymphoma are targeted by aberrant somatic hypermutation. Blood 2007;109:3500-3504. https://doi.org/10.1182/blood-2006-06-030494
  34. Ye H, Gong L, Liu H, et al. Strong BCL10 nuclear expression identifies gastric MALT lymphomas that do not respond to H pylori eradication. Gut 2006;55:137-138. https://doi.org/10.1136/gut.2005.081117
  35. Streubel B, Simonitsch-Klupp I, Mullauer L, et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia 2004;18:1722-1726. https://doi.org/10.1038/sj.leu.2403501
  36. Remstein ED, Dogan A, Einerson RR, et al. The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am J Surg Pathol 2006;30:1546-1553. https://doi.org/10.1097/01.pas.0000213275.60962.2a
  37. Farinha P, Gascoyne RD. Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J Clin Oncol 2005;23:6370-6378. https://doi.org/10.1200/JCO.2005.05.011
  38. Inagaki H, Nakamura T, Li C, et al. Gastric MALT lymphomas are divided into three groups based on responsiveness to Helicobacter pylori eradication and detection of API2-MALT1 fusion. Am J Surg Pathol 2004;28:1560-1567. https://doi.org/10.1097/00000478-200412000-00003
  39. Kuper-Hommel MJ, van Krieken JH. Molecular pathogenesis and histologic and clinical features of extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue type. Leuk Lymphoma 2012;53:1032-1045. https://doi.org/10.3109/10428194.2011.631157
  40. Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999;93:3601-3609.
  41. Akagi T, Motegi M, Tamura A, et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 1999;18:5785-5794. https://doi.org/10.1038/sj.onc.1203018
  42. Suzuki H, Motegi M, Akagi T, Hosokawa Y, Seto M. API1-MALT1-MLT is involved in mucosa-associated lymphoid tissue lymphoma with t(11;18)(q21;q21). Blood 1999;94:3270-3271.
  43. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997;16:6914-6925. https://doi.org/10.1093/emboj/16.23.6914
  44. Lucas PC, Yonezumi M, Inohara N, et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem 2001;276:19012-19019. https://doi.org/10.1074/jbc.M009984200
  45. Baens M, Steyls A, Dierlamm J, De Wolf-Peeters C, Marynen P. Structure of the MLT gene and molecular characterization of the genomic breakpoint junctions in the t(11;18)(q21;q21) of marginal zone B-cell lymphomas of MALT type. Genes Chromosomes Cancer 2000;29:281-291. https://doi.org/10.1002/1098-2264(2000)9999:9999<::AID-GCC1036>3.0.CO;2-I
  46. Zhou H, Du MQ, Dixit VM. Constitutive NF-kappaB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 2005;7:425-431. https://doi.org/10.1016/j.ccr.2005.04.012
  47. Nakamura S, Sugiyama T, Matsumoto T, et al. Long-term clinical outcome of gastric MALT lymphoma after eradication of Helicobacter pylori: a multicentre cohort follow-up study of 420 patients in Japan. Gut 2012;61:507-513. https://doi.org/10.1136/gutjnl-2011-300495
  48. Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A, et al. Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet 2001;357:39-40. https://doi.org/10.1016/S0140-6736(00)03571-6
  49. Isaacson PG, Du MQ. MALT lymphoma: from morphology to molecules. Nat Rev Cancer 2004;4:644-653. https://doi.org/10.1038/nrc1409
  50. Li Z, Wang H, Xue L, et al. Emu-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-kappaB pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma. Blood 2009;114:4158-4168. https://doi.org/10.1182/blood-2008-12-192583
  51. Streubel B, Lamprecht A, Dierlamm J, et al. T(14;18) (q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 2003;101:2335-2339. https://doi.org/10.1182/blood-2002-09-2963
  52. Remstein ED, Kurtin PJ, Einerson RR, Paternoster SF, Dewald GW. Primary pulmonary MALT lymphomas show frequent and heterogeneous cytogenetic abnormalities, including aneuploidy and translocations involving API2 and MALT1 and IGH and MALT1. Leukemia 2004;18:156-160. https://doi.org/10.1038/sj.leu.2403185
  53. Tusche MW, Ward LA, Vu F, et al. Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med 2009;206:2671-2683. https://doi.org/10.1084/jem.20091802
  54. Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 2005;19:652-658. https://doi.org/10.1038/sj.leu.2403644
  55. Banham AH, Connors JM, Brown PJ, et al. Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma. Clin Cancer Res 2005;11:1065-1072.
  56. Fenton JA, Schuuring E, Barrans SL, et al. T(3;14)(p14;q32) results in aberrant expression of FOXP1 in a case of diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2006;45:164-168. https://doi.org/10.1002/gcc.20278
  57. Ye H, Remstein ED, Bacon CM, Nicholson AG, Dogan A, Du MQ. Chromosomal translocations involving BCL6 in MALT lymphoma. Haematologica 2008;93:145-146. https://doi.org/10.3324/haematol.11927
  58. Chen YW, Hu XT, Liang AC, et al. High BCL6 expression predicts better prognosis, independent of BCL6 translocation status, translocation partner, or BCL6-deregulating mutations, in gastric lymphoma. Blood 2006;108:2373-2383. https://doi.org/10.1182/blood-2006-05-022517
  59. Chanudet E, Ye H, Ferry J, et al. A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J Pathol 2009;217:420-430. https://doi.org/10.1002/path.2466
  60. Chanudet E, Huang Y, Ichimura K, et al. A20 is targeted by promoter methylation, deletion and inactivating mutation in MALT lymphoma. Leukemia 2010;24:483-487. https://doi.org/10.1038/leu.2009.234
  61. Wotherspoon AC, Finn TM, Isaacson PG. Trisomy 3 in low-grade B-cell lymphomas of mucosa-associated lymphoid tissue. Blood 1995;85:2000-2004.
  62. Brynes RK, Almaguer PD, Leathery KE, et al. Numerical cytogenetic abnormalities of chromosomes 3, 7, and 12 in marginal zone B-cell lymphomas. Mod Pathol 1996;9:995-1000.
  63. Vinatzer U, Gollinger M, Mullauer L, Raderer M, Chott A, Streubel B. Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res 2008;14:6426-6431. https://doi.org/10.1158/1078-0432.CCR-08-0702
  64. Ansell SM, Akasaka T, McPhail E, et al. T(X;14)(p11;q32) in MALT lymphoma involving GPR34 reveals a role for GPR34 in tumor cell growth. Blood 2012;120:3949-3957. https://doi.org/10.1182/blood-2011-11-389908
  65. Liu TY, Dei PH, Kuo SH, Lin CW. Early low-grade gastric MALToma rarely transforms into diffuse large cell lymphoma or progresses beyond the stomach and regional lymph nodes. J Formos Med Assoc 2010;109:463-471. https://doi.org/10.1016/S0929-6646(10)60078-2
  66. Thieblemont C, Berger F, Dumontet C, et al. Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed. Blood 2000;95:802-806.
  67. Oka K, Nagayama R, Yonekawa N, et al. Concurrent gastric MALT and Hodgkin lymphoma: a case report. Int J Surg Pathol 2012;20:201-204.
  68. Oka K, Shinonaga M, Nagayama R, et al. Coexistence of primary pulmonary Hodgkin lymphoma and gastric MALT lymphoma associated with Epstein-Barr virus infection: a case report. Pathol Int 2010;60:520-523. https://doi.org/10.1111/j.1440-1827.2010.02554.x
  69. Zettl A, Rudiger T, Marx A, Muller-Hermelink HK, Ott G. Composite marginal zone B-cell lymphoma and classical Hodgkin's lymphoma: a clinicopathological study of 12 cases. Histopathology 2005;46:217-228. https://doi.org/10.1111/j.1365-2559.2005.02046.x
  70. Du M, Peng H, Singh N, Isaacson PG, Pan L. The accumulation of p53 abnormalities is associated with progression of mucosa-associated lymphoid tissue lymphoma. Blood 1995;86:4587-4593.
  71. Martinez-Delgado B, Robledo M, Arranz E, et al. Hypermethylation of p15/ink4b/MTS2 gene is differentially implicated among non-Hodgkin's lymphomas. Leukemia 1998;12:937-941. https://doi.org/10.1038/sj.leu.2401009
  72. Martinez-Delgado B, Fernandez-Piqueras J, Garcia MJ, et al. Hypermethylation of a 5' CpG island of p16 is a frequent event in non-Hodgkin's lymphoma. Leukemia 1997;11:425-428. https://doi.org/10.1038/sj.leu.2400579
  73. Neumeister P, Hoefler G, Beham-Schmid C, et al. Deletion analysis of the p16 tumor suppressor gene in gastrointestinal mucosa-associated lymphoid tissue lymphomas. Gastroenterology 1997;112:1871-1875. https://doi.org/10.1053/gast.1997.v112.pm9178679
  74. Deutsch AJ, Steinbauer E, Hofmann NA, et al. Chemokine receptors in gastric MALT lymphoma: loss of CXCR4 and upregulation of CXCR7 is associated with progression to diffuse large B-cell lymphoma. Mod Pathol 2012 Aug 31 [Epub]. http://dx.doi.org/10.1038/modpathol.2012.134.

Cited by

  1. A Case of Simultaneous Primary Gastric and Duodenal Mucosa-Associated Lymphoid Tissue Lymphoma after Therapeutic Endoscopy vol.89, pp.1, 2012, https://doi.org/10.3904/kjm.2015.89.1.64