DOI QR코드

DOI QR Code

V700 Cygni: A Dynamically Active W UMa-type Binary Star II

  • Kim, Chun-Hwey (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Jeong, Jang-Hae (Department of Astronomy and Space Science, Chungbuk National University)
  • 투고 : 2012.05.20
  • 심사 : 2012.05.28
  • 발행 : 2012.06.15

초록

An intensive analysis of 148 timings of V700 Cyg was performed, including our new timings and 59 timings calculated from the super wide angle search for planets (SWASP) observations, and the dynamical evidence of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately $66^y$ in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increased at a rate of $+8.7({\pm}3.4){\times}10^{-9}$ day/year, which is one order of magnitude lower than those obtained by previous investigators. The small secular period increase is interpreted as a combination of both angular momentum loss (due to magnetic braking) and mass-transfer from the less massive component to the more massive component. One cyclical component had a $20.^y3$ period with an amplitude of $0.^d0037$, and the other had a $62.^y8$ period with an amplitude of $0.^d0258$. The components had an approximate 1:3 relation between their periods and a 1:7 ratio between their amplitudes. Two plausible mechanisms (i.e., the light-time effects [LTEs] caused by the presence of additional bodies and the Applegate model) were considered as possible explanations for the cyclical components. Based on the LTE interpretation, the minimum masses of 0.29 $M_{\odot}$ for the shorter period and 0.50 $M_{\odot}$ for the longer one were calculated. The total light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root mean square luminosity variations (relative to the luminosities of the eclipsing components) are 3 times smaller than the nominal value (${\Delta}L/L_{p,s}{\approx}0.1$), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes. A possible evolutionary implication for the V700 Cyg system is discussed.

키워드

참고문헌

  1. Agerer F, Hübscher J, Photoelectric minima of selected eclipsing binaries and maxima of pulsating stars, IBVS, 5296, 1-16 (2002).
  2. Albayrak BA, Period study of the close binary V508 Ophiuchi, PASA, 22, 311-314 (2005). http://dx.doi.org/10.1071/AS05014
  3. Applegate JH, A mechanism for orbital period modulation in close binaries, ApJ, 385, 621-629 (1992). http://dx.doi.org/10.1086/170967
  4. Bradstreet DH, Guinan EF, Stellar mergers and acquisitions: the formation and evolution of W Ursae Majoris binaries, ASPC, 56, 228-243 (1994).
  5. Brat L, Smelcer L, Kucakova H, Ehrenberger R, Kocian R, et al., B.R.N.O. Times of minima, OEJV, 94, 1-28 (2008).
  6. Brat L, Trnka J, Smelcer L, Lehky M, Kucakova H, et al., B.R.N.O. Contributions #37-times of minima, OEJV, 137, 1-57 (2011).
  7. Brat L, Zejda M, Svoboda P, B.R.N.O. Contributions # 34, OEJV, 74, 1-75 (2007).
  8. Demircan O, Dynamical evolution of the RS CVn-type binaries, TJPh, 23, 425-432 (1999).
  9. Dommanget J, Nys O, Catalogue des composantes d'etoiles doubles et multiples, deuxieme edition, Observations et Travaux, 54, 5 (2002).
  10. Eggen OJ, Contact binaries II, MmRAS, 70, 111-164 (1967).
  11. Eggleton PP, Formation & evolution of contact binaries, JASS, 29, 145-149 (2012). http://dx.doi.org/10.5140/JASS.2012.29.2.145
  12. Eggleton PP, Tokovinin AA, A catalogue of multiplicity among bright stellar systems, MNRAS, 389, 869-879 (2008). doi:10.1111/j.1365-2966.2008.13596.x
  13. Flannery BP, A cyclic thermal instability in contact binary stars, ApJ, 205, 217-225 (1976). http://dx.doi.org/10.1086/154266
  14. Hubscher J, BAV-results of observations-photoelectric minima of selected eclipsing binaries and maxima of pulsating stars, IBVS, 5984, 1-16 (2011).
  15. Hubscher J, Lehmann PB, Monninger, G, Steinbach, HM, Walter, F, BAV-results of observations-photoelectric minima of selected eclipsing binaries and maxima of pulsating stars, IBVS, 5941, 1-16 (2010b).
  16. Hubscher J, Steinbach HM, Walter, F, BAV-results of observations-photoelectric minima of selected eclipsing binaries and maxima of pulsating stars, IBVS, 5889, 1-12 (2010a).
  17. Irwin JB, The determination of a light-time orbit, ApJ, 116, 211-217 (1952). http://dx.doi.org/10.1086/145604
  18. Irwin JB, Standard light-time curves, AJ, 64, 149-155 (1959). http://dx.doi.org/10.1086/107913
  19. Jeong JH, Kim C-H, WZ Cephei: a dynamically active W UMa-type binary star, JASS, 28, 163-172 (2011). http://dx.doi.org/10.5140/JASS.2011.28.3.163
  20. Kim C-H, Jeong JH, Demircan O, Muyesseroglu Z, Budding E, The period changes of YY Eridani, AJ, 114, 2753-2763 (1997). http://dx.doi.org/10.1086/118684
  21. Kim C-H, Kim H-I, Yoon TS, Han W, Lee JW, et al., SW Lyncis-advances and questions, JASS, 27, 263-278 (2010). http://dx.doi.org/10.5140/JASS.2010.27.4.263
  22. Kim C-H, Lee CU, Yoon Y-N, Park S-S, Kim DH, et al., New CCD times of minima of eclipsing binary systems, IBVS, 5694, 1-6 (2006).
  23. Kim C-H, Lee JW, Kim H-I, Kyung JM, Koch RH, Photometric studies of the triple star ER Orionis, AJ, 126, 1555-1562 (2003). http://dx.doi.org/10.1086/377321
  24. Kim C-H, Nha IS, Kreiner JM, A possible detection of a second light-time orbit for the massive, early-type eclipsing binary star AH Cephei, AJ, 129, 990-1000 (2005). http://dx.doi.org/10.1086/426747
  25. Kley W, Peitz J, Bryden G, Evolution of planetary systems in resonance, A&A, 414, 735-747 (2004). http://dx.doi.org/10.1051/0004-6361:20031589
  26. Kotkova L, Wolf M, Precise CCD times of minima of selected eclipsing binaries, IBVS, 5676, 1-4 (2006).
  27. Kozai Y, Secular perturbations of asteroids with high inclination and eccentricity, AJ, 67, 591-598 (1962). https://doi.org/10.1086/108790
  28. Kreiner JM, Kim C-H, Nha IS, An atlas of O-C diagrams of eclipsing binary stars (Wydawnictwo Naukowe Akademii Pedagogicznej, Krakow, 2001).
  29. Kwee KK, van Woerden H, A method for computing accurately the epoch of minimum of an eclipsing variable, BAN, 12, 327-330 (1956).
  30. Lanza AF, Rodono M, Rosner R, Orbital period modulation and magnetic cycles in close binaries, MNRAS, 296, 893-902 (1998). http://dx.doi.org/10.1046/j.1365-8711.1998.01446.x
  31. Lee JW, Lee C-U, Kim S-L, Kim H-I, Park J-H, The Algol system SZ Herculis: physical nature and orbital behavior, AJ, 143, 34 (2012). http://dx.doi.org/10.1088/0004-6256/143/2/34
  32. Lee JW, Youn JH, Kim C-H, Lee CU, Kim HI, A photometric study of the short-period close binary V432 Persei and its implications for the star's evolution, AJ, 135, 1523-1532 (2008). http://dx.doi.org/10.1088/0004-6256/135/4/ 1523
  33. Lucy LB, W Ursae Majoris systems with marginal contact, ApJ, 205, 208-216 (1976). https://doi.org/10.1086/154265
  34. Maceroni C, van't Veer F, The galactic cluster NGC 188: W Ursae Majoris contact binaries as a clue to two separate bursts of star formation, A&A, 248, 430-434 (1991).
  35. Mason BD, Wycoff GL, Hartkopf WI, Douglass GG, Worley CE, The 2001 US Naval Observatory double star CD-ROM. I. The Washington double star catalog, AJ, 122, 3466-3471 (2001). http://dx.doi.org/10.1086/323920
  36. Molik P, Wolf M, Eclipsing binaries in the blue envelope of the period-color diagram, BaltA, 13, 145-147 (2004).
  37. Nelson R, CCD minima for selected eclipsing binaries in 2007, IBVS, 5820, 1-3 (2008).
  38. Niarchos PG, Hoffmann M, Duerbeck HW, V 700 Cygni and AW Virginis: two W-type W UMa systems with spotted components, A&AS, 124, 291-298 (1997). http://dx.doi.org/10.1051/aas:1997193
  39. Peale SJ, Orbital resonances in the solar system, ARA&A, 14, 215-246 (1976). http://dx.doi.org/10.1146/annurev.aa.14.090176.001243
  40. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical recipes in C, 2nd ed. (Cambridge University Press, Cambridge, 1992), Chap. 15.
  41. Qian S, Are overcontact binaries undergoing thermal relaxation oscillation with variable angular momentum loss?, MNRAS, 342, 1260-1270 (2003). http://dx.doi.org/10.1046/j.1365-8711.2003.06627.x
  42. Robertson JA, Eggleton PP, The evolution of W Ursae Majoris systems, MNRAS, 179, 359-375 (1977). https://doi.org/10.1093/mnras/179.3.359
  43. Rucinski SM, Contact binaries: angular momentum loss in and out of contact, A&A, 112, 273-276 (1982).
  44. Rucinski SM, Pribulla T, van Kerkwijk MH, Contact binaries with additional components. III. A search using adaptive optics, AJ, 134, 2353-2365 (2007). http://dx.doi.org/10.1086/523353
  45. Stepien K, Loss of angular momentum of cool close binaries and formation of contact systems, MNRAS, 274, 1019-1028 (1995).
  46. Stepvien K, The low-mass limit for total mass of W UMa-type binaries, AcA, 56, 347-364 (2006).
  47. Tokovinin A, Thomas S, Sterzik M, Udry S, Tertiary companions to close spectroscopic binaries, A&A, 450, 681-693 (2006). http://dx.doi.org/10.1051/0004-6361:20054427
  48. van''t Veer F, The angular momentum controlled evolution of solar type contact binaries, A&A, 80, 287-295 (1979).
  49. Whitney BS, Variable star notes: a small nebula, AJ, 56, 206-208 (1952). http://dx.doi.org/10.1086/106640
  50. Wilson RE, Devinney EJ, Realization of accurate close-binary light curves: application to MR Cygni, ApJ, 166, 605-619 (1971). http://dx.doi.org/10.1086/150986
  51. Wolf M, Molik P, Hornoch KL, Sarounova L, Period changes in W UMa-type eclipsing binaries: DK Cygni, V401 Cygni, AD Phoenicis and Y Sextantis, A&AS, 147, 243-249 (2000). http://dx.doi.org/10.1051/aas:2000300
  52. Xiang F, Tian Y, Tao X, Xie W, An orbital period investigation of the solar-type overcontact binary V700 Cygni, PASJ, 61, 499-502 (2009).
  53. Yang YG, Dai HF, A new photometric study for the weak-contact binary V700 Cygni, PASJ, 61, 577-584 (2009).
  54. Zasche P, Wolf M, Combining astrometry with the light-time effect: the case of VW Cep, ${\zeta}$ Phe and HT Vir, AN, 328, 928-937 (2007).
  55. Zasche P, Zejda M, Brat L, Eclipsing binaries with possible light-time effect, Ap&SS, 304, 177-179 (2006). http://dx.doi.org/10.1007/s10509-006-9103-2

피인용 문헌

  1. The First Photometric Study of NSVS 1461538: A New W-subtype Contact Binary with a Low Mass Ratio and Moderate Fill-out Factor vol.33, pp.3, 2016, https://doi.org/10.5140/JASS.2016.33.3.185
  2. Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331 vol.32, pp.2, 2015, https://doi.org/10.5140/JASS.2015.32.2.127