DOI QR코드

DOI QR Code

Mitoxantrone Binds to Nopp140, an Intrinsically Unstructured Protein, and Modulate its Interaction with Protein Kinase CK2

  • Lee, Won-Kyu (Department of Chemistry, Kookmin University) ;
  • Lee, Sang-Yeop (Department of Chemistry, Kookmin University) ;
  • Na, Jung-Hyun (Department of Chemistry, Kookmin University) ;
  • Jang, Sung-Woo (Department of Chemistry, Kookmin University) ;
  • Park, Chan-Ryang (Department of Chemistry, Kookmin University) ;
  • Kim, Soo-Youl (Cancer Cell & Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center) ;
  • Lee, Si-Hyeong (Division of Biosystems Research, Korea Research Institute of Bioscience and Biotechnology) ;
  • Han, Kyou-Hoon (Division of Biosystems Research, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yu, Yeon-Gyu (Department of Chemistry, Kookmin University)
  • Received : 2012.02.20
  • Accepted : 2012.03.22
  • Published : 2012.06.20

Abstract

Nopp140 is a highly phosphorylated protein that resides in the nucleolus of mammalian cell and is involved in the biogenesis of the nucleolus. It interacts with a variety of proteins related to the synthesis and assembly of the ribosome. It also can bind to a ubiquitous protein kinase CK2 that mediates cell growth and prevents apoptosis. We found that Nopp140 is an intrinsically unfolded protein (IUP) lacking stable secondary structures over its entire sequence of 709 residues. We discovered that mitoxantrone, an anticancer agent, was able to enhance the interaction between Nopp140 and CK2 and maintain suppressed activity of CK2. Surface plasma resonance studies on different domains of Nopp140 show that the C-terminal region of Nopp140 is responsible for binding with mitoxantrone. Our results present an interesting example where a small chemical compound binds to an intrinsically unfolded protein (IUP) and enhances protein-protein interactions.

Keywords

References

  1. Meier, U. T.; Blobel, G. J. Cell Biol. 1990, 111, 2235-2245. https://doi.org/10.1083/jcb.111.6.2235
  2. Yang, Y.; Isaac, C.; Wang, C.; Dragon, F.; Pogacic, V.; Meier, U. T. Mol. Biol. Cell 2000, 11, 567-577. https://doi.org/10.1091/mbc.11.2.567
  3. Isaac, C.; Yang, Y.; Meier, U. T. J. Cell Biol. 1998, 142, 319-329. https://doi.org/10.1083/jcb.142.2.319
  4. Meier, U. T.; Blobel, G. J. Cell Biol. 1994, 127, 1505-1514. https://doi.org/10.1083/jcb.127.6.1505
  5. Li, D.; Meier, U. T.; Dobrowolska, G.; Krebs, E. G. J. Biol. Chem. 1997, 272, 3773-3779. https://doi.org/10.1074/jbc.272.6.3773
  6. Chen, H. K.; Pai, C. Y.; Huang, J. Y.; Yeh, N. H. Mol. Cell. Biol. 1999, 19, 8536-8546.
  7. Meier, U. T.; Blobel G. Cell 1992, 70, 127-138. https://doi.org/10.1016/0092-8674(92)90539-O
  8. Cui, Z.; DiMario, P. J. Mol. Biol. Cell 2007, 18, 2179-2191. https://doi.org/10.1091/mbc.E07-01-0074
  9. Kim, Y. K.; Lee, W. K.; Jin, Y.; Lee, K. J.; Jeon, H.; Yu, Y. G. J. Biochem. Mol. Biol. 2006, 39, 774-781. https://doi.org/10.5483/BMBRep.2006.39.6.774
  10. Pai, C. Y.; Yeh, N. H. Biochem. Biophys. Res. Commun. 1996, 221, 581-587. https://doi.org/10.1006/bbrc.1996.0639
  11. Jin, Y.; Yu, J.; Yu, Y. G. Chem. Biol. 2002, 9, 157-162. https://doi.org/10.1016/S1074-5521(02)00096-0
  12. Hoffmann, J.; Schwoch, G. Biochem. J. 1989, 263, 785-793.
  13. Wise, C. A.; Chiang, L. C.; Paznekas, W. A.; Sharma, M.; Musy, M. M.; Ashley, J. A.; Lovett, M.; Jabs, E. W. Proc Natl. Acad. Sci. USA 1997, 94, 3110-3115. https://doi.org/10.1073/pnas.94.7.3110
  14. Pai, C. Y.; Chen, H. K.; Sheu, H. L.; Yeh, N. H. J. Cell Sci. 1995, 108(Pt 5) 1911-1920.
  15. Meggio, F.; Pinna, L. A. FASEB J. 2003, 17, 349-368. https://doi.org/10.1096/fj.02-0473rev
  16. Tawfic, S.; Yu, S.; Wang, H.; Faust, R.; Davis, A.; Ahmed, K. Histol. Histopathol. 2001, 16, 573-582.
  17. Glover, C. V. 3rd Prog. Nucleic Acid Res. Mol. Biol. 1998, 59, 95- 133.
  18. Buchou, T.; Vernet, M.; Blond, O.; Jensen, H. H.; Pointu, H.; Olsen, B. B.; Cochet, C.; Issinger, O. G.; Boldyreff, B. Mol. Cell. Biol. 2003, 23, 908-915. https://doi.org/10.1128/MCB.23.3.908-915.2003
  19. Escalier, D.; Silvius, D.; Xu, X. Mol. Reprod. Dev. 2003, 66, 190- 201. https://doi.org/10.1002/mrd.10346
  20. Stalter, G.; Siemer, S.; Becht, E.; Ziegler, M.; Remberger, K.; Issinger, O. G. Biochem. Biophys. Res. Commun. 1994, 202, 141- 147. https://doi.org/10.1006/bbrc.1994.1904
  21. Daya-Makin, M.; Sanghera, J. S.; Mogentale, T. L.; Lipp, M.; Parchomchuk, J.; Hogg, J. C.; Pelech, S. L. Cancer Res. 1994, 54, 2262-2268.
  22. Faust, R. A.; Tawfic, S.; Davis, A. T.; Bubash, L. A.; Ahmed, K.; Head Neck 2000, 22, 341-346. https://doi.org/10.1002/1097-0347(200007)22:4<341::AID-HED5>3.0.CO;2-3
  23. Yenice, S.; Davis, A. T.; Goueli, S. A.; Akdas, A.; Limas, C.; Ahmed, K. Prostate 1994, 24, 11-16. https://doi.org/10.1002/pros.2990240105
  24. Landesman-Bollag, E.; Romieu-Mourez, R.; Song, D. H.; Sonenshein, G. E.; Cardiff, R. D.; Seldin, D. C. Oncogene 2001, 20, 3247- 3257. https://doi.org/10.1038/sj.onc.1204411
  25. Seldin, D. C.; Leder, P. Science 1995, 267, 894-897. https://doi.org/10.1126/science.7846532
  26. Guerra, B.; Issinger, O. G. Electrophoresis 1999, 20, 391-408. https://doi.org/10.1002/(SICI)1522-2683(19990201)20:2<391::AID-ELPS391>3.0.CO;2-N
  27. Homma, M. K.; Li, D.; Krebs, E. G.; Yuasa, Y.; Homma, Y. Proc. Natl. Acad. Sci. USA 2002, 99, 5959-5964. https://doi.org/10.1073/pnas.092143199
  28. Kim, Y. K.; Lee, K. J.; Jeon, H.; Yu, Y. G. J. Biol. Chem. 2006, 281, 36752-36757. https://doi.org/10.1074/jbc.M604785200
  29. Lee, W. K.; Lee, S. Y.; Kim, W. I.; Rho, Y. H.; Bae, Y. S.; Lee, C.; Kim, I. Y.; Yu, Y. G. Biochem. Biophys. Res. Commun. 2008, 376, 439-444. https://doi.org/10.1016/j.bbrc.2008.09.008
  30. Kim, Y. K.; Jin, Y.; Vukoti, K. M.; Park, J. K.; Kim, E. E.; Lee, K. J.; Yu, Y. G. Protein Expr. Purif. 2003, 31, 260-264. https://doi.org/10.1016/S1046-5928(03)00194-3
  31. Pelton, J. T.; McLean, L. R. Anal. Biochem. 2000, 277, 167-176. https://doi.org/10.1006/abio.1999.4320
  32. Dosztanyi, Z.; Csizmok, V.; Tompa, P.; Simon, I. Bioinformatics 2005, 21, 3433-3434. https://doi.org/10.1093/bioinformatics/bti541
  33. Chen, Y.; Briese, F. W.; Reeve, E. B. Am. J. Physiol. 1974, 227, 927-931.
  34. Cole, C.; Barber, J. D.; Barton, G. J. Nucleic Acids Res. 2008, 36, W197-201. https://doi.org/10.1093/nar/gkn238
  35. Seker, U. O.; Wilson, B.; Dincer, S.; Kim, I. W.; Oren, E. E.; Evans, J. S.; Tamerler, C.; Sarikaya, M. Langmuir 2007, 23, 7895- 7900. https://doi.org/10.1021/la700446g
  36. Solyakov, L.; Cain, K.; Tracey, B. M.; Jukes, R.; Riley, A. M.; Potter, B. V.; Tobin, A. B. J. Biol. Chem. 2004, 279, 43403-43410. https://doi.org/10.1074/jbc.M403239200
  37. Lee, H.; Mok, K. H.; Muhandiram, R.; Park, K. H.; Suk, J. E.; Kim, D. H.; Chang, J.; Sung, Y. C.; Choi, K. Y.; Han, K. H. J. Biol. Chem. 2000, 275, 29426-29432. https://doi.org/10.1074/jbc.M003107200
  38. Fink, A. L. Curr. Opin. Struct. Biol. 2005, 15, 35-41. https://doi.org/10.1016/j.sbi.2005.01.002
  39. Kim, D. H.; Lee, S. H.; Nam, K. H.; Chi, S. W.; Chang, I.; Han, K. H. BMB Reports 2009, 42, 411-417. https://doi.org/10.5483/BMBRep.2009.42.7.411
  40. Chi, S. W.; Lee, S. H.; Kim, D. H.; Ahn, M. J.; Kim, J. S.; Woo, J. Y.; Torizawa, T.; Kainosho, M.; Han, K. H. J. Biol. Chem. 2005, 280, 38795-38802. https://doi.org/10.1074/jbc.M508578200
  41. Lee, S. H.; Kim, D. H.; Han, J. J.; Cha, E. J.; Lim, J. E.; Cho, Y. J.; Lee, C.; Han, K. H. Curr. Protein Pept. Lett. 2012, 13, 34-54. https://doi.org/10.2174/138920312799277974
  42. Follis, A. V.; Hammoudeh, D. I.; Wang, H.; Prochownik, E. V.; Metallo, S. J. Chem. & Biol. 2008, 15 1149-1155. https://doi.org/10.1016/j.chembiol.2008.09.011
  43. Yin, X.; Giap, C.; Lazo, J. S.; Prochownik, E. V. Oncogene 2003, 22, 6151-6159. https://doi.org/10.1038/sj.onc.1206641
  44. Stoll, R.; Renner, C.; Hansen, S.; Palme, S.; Klein, C.; Belling, A.; Zeslawski, W.; Kamionka, M.; Rehm, T.; Muhlhahn, P.; Schumacher, R.; Hesse, F.; Kaluza, B.; Voelter, W.; Engh, R. A.; Holak, T. A. Biochemistry 2001, 40, 336-344. https://doi.org/10.1021/bi000930v

Cited by

  1. Structural and functional insights into the regulation mechanism of CK2 by IP6 and the intrinsically disordered protein Nopp140 vol.110, pp.48, 2013, https://doi.org/10.1073/pnas.1304670110
  2. How Do We Study the Dynamic Structure of Unstructured Proteins: A Case Study on Nopp140 as an Example of a Large, Intrinsically Disordered Protein vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020381