DOI QR코드

DOI QR Code

Comparative Studies on the Reactions of Carbamyl and Thiocarbamyl Halides with NH3 in the Gas Phase and in Aqueous Solution: A Theoretical Study

  • Kim, Chang-Kon (Department of Chemistry, Inha University) ;
  • Han, In-Suk (Department of Chemistry, Inha University) ;
  • Sohn, Chang-Kook (Department of Chemistry Education, Chonnam National University) ;
  • Yu, Yu-Hee (Department of Chemistry Education, Chonnam National University) ;
  • Su, Zhishan (Department of Chemistry, Inha University) ;
  • Kim, Chan-Kyung (Department of Chemistry, Inha University)
  • Received : 2012.02.23
  • Accepted : 2012.03.14
  • Published : 2012.06.20

Abstract

In this work, the reactions of carbamyl and thiocarbamyl halides with $NH_3$ were studied in the gas phase at the MP2(FC)/6-31+G(d) level of theory. Single point calculations were performed at the QCISD/6-311+G(3df,2p) to refine the energetics. The reaction mechanisms were also studied in aqueous solution. The structures were fully optimized at the CPCM-MP2(FC)/6-31+G(d) and refined by a single point CPCM-QCISD/6-311+G(3df,2p) calculations. The reaction mechanisms for the title compounds were compared with those for the acetyl and thioacetyl halides. The lower reactivity of carbamyl (and thiocarbamyl) groups was explained by comparing the C=O and C=S ${\pi}$-bond strengths as well as resonance contributions in the ground state.

Keywords

References

  1. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  2. Beckwith, A. L. J. In The Chemistry of Amide; Zabicky, J., Ed.; Interscience Publisher: New York, 1970; pp 73-185.
  3. Um, I. W.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475. https://doi.org/10.1021/jo026339g
  4. Bentley, T. W.; Liewellyn, G.; McAlister, J. A. J. Org. Chem. 1996, 61, 7927. https://doi.org/10.1021/jo9609844
  5. Williams, A. Acc. Chem. Res. 1989, 22, 387. https://doi.org/10.1021/ar00167a003
  6. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1989, 111, 2647. https://doi.org/10.1021/ja00189a045
  7. Kevill, D. N.; Kim, C. B. J. Chem. Soc., Perkin Trans. 2 1988, 1353.
  8. Chrystiuk, E.; Williams, A. J. Am. Chem. Soc. 1987, 109, 3040. https://doi.org/10.1021/ja00244a028
  9. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362. https://doi.org/10.1021/ja00255a021
  10. Bentley, T. W.; Harris, H. C. J. Chem. Soc., Perkin Trans. 2 1986, 619.
  11. Craig, S. L.; Zhong, M.; Brauman, J. I. J. Am. Chem. Soc. 1999, 121, 11790. https://doi.org/10.1021/ja990556q
  12. Zhong, M.; Brauman, J. I. J. Am. Chem. Soc. 1999, 121, 2508. https://doi.org/10.1021/ja973151j
  13. Wilbur, J. L.; Brauman, J. I. J. Am. Chem. Soc. 1994, 116, 9216. https://doi.org/10.1021/ja00099a043
  14. Wilbur, J. L.; Brauman, J. I. J. Am. Chem. Soc. 1994, 116, 5839. https://doi.org/10.1021/ja00092a039
  15. March, J. Advanced Organic Chemistry, 3rd ed.; John Wiley and Sons: New York, 1985; pp 290-295.
  16. Fox, J. M.; Dmitrenko, O.; Liao, L.; Bach, R. D. J. Org. Chem. 2004, 69, 7317. https://doi.org/10.1021/jo049494z
  17. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B.-S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
  18. Blake, J. F.; Jorgenson, W. L. J. Am. Chem. Soc. 1987, 109, 3856. https://doi.org/10.1021/ja00247a007
  19. Yamabe, S.; Minato, T. J. Org. Chem. 1983, 48, 2972. https://doi.org/10.1021/jo00166a007
  20. Bender, M. L. J. Am. Chem. Soc. 1951, 73, 1626. https://doi.org/10.1021/ja01148a063
  21. Kim, J. K.; Caserio, M. C. J. Am. Chem. Soc. 1981, 103, 2124. https://doi.org/10.1021/ja00398a057
  22. Guthrie, J. P. J. Am. Chem. Soc. 1991, 113, 3941. https://doi.org/10.1021/ja00010a040
  23. Kim, C. K.; Han, I. S.; Sohn, C. K.; Yu, Y. H.; Lee, H. W.; Kim, C. K. J. Phys. Chem. A 2011, 115, 1364. https://doi.org/10.1021/jp104484g
  24. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley and Sons: New York, 1986.
  25. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. https://doi.org/10.1021/jp9716997
  26. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. https://doi.org/10.1002/jcc.10189
  27. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024. https://doi.org/10.1021/ja00051a040
  28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B03; Gaussian, Inc., Pittsburgh, PA, 2003.
  29. Schmidt, M. W.; Truong, P. N.; Gordon, M. S. J. Am. Chem. Soc. 1987, 109, 5217. https://doi.org/10.1021/ja00251a029
  30. Schleyer, P. v. R.; Kost, D. J. Am. Chem. Soc. 1988, 110, 2105. https://doi.org/10.1021/ja00215a016
  31. Wiberg, K. B.; Nakaji, D. J. Am. Chem. Soc. 1993, 115, 10658. https://doi.org/10.1021/ja00076a026
  32. Avakyan, V. G.; Sidorkin, V. F.; Belogolova, E. F.; Guselnikov, S. L.; Gusel'nikov, L. E. Organometallics 2006, 25, 6007. https://doi.org/10.1021/om0605478
  33. Castejon, H.; Wiberg, K. B. J. Am. Chem. Soc. 1999, 121, 2139. https://doi.org/10.1021/ja983736t
  34. Gao, J.; Xia, X. J. Am. Chem. Soc. 1993, 115, 9667. https://doi.org/10.1021/ja00074a036
  35. Nagase, S.; Morokuma, K. J. Am. Chem. Soc. 1978, 100, 1666. https://doi.org/10.1021/ja00474a005
  36. Mitchell, D. J.; Schlegel, H. B.; Shaik, S. S.; Wolfe, S. Can. J. Chem. 1985, 63, 1642. https://doi.org/10.1139/v85-276
  37. Chen, J. X.; Kim, C. K.; Lee, H. W.; Xue, Y.; Kim, C. K. J. Comput. Chem. 2011, 32, 1361. https://doi.org/10.1002/jcc.21718

Cited by

  1. Correlation of the Rates of Solvolysis of Electron-Rich Benzoyl Chloride Using the Extended Grunwald-Wistein Equation vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2697
  2. Specificities of application of the supermolecule method to the calculation of reaction mechanisms in a protonodonor medium. Ethylene carbonate aminolysis in methanol vol.136, pp.9, 2017, https://doi.org/10.1007/s00214-017-2124-9
  3. Mechanistic Studies of the Solvolyses of Carbamoyl Chlorides and Related Reactions vol.17, pp.1, 2016, https://doi.org/10.3390/ijms17010111