DOI QR코드

DOI QR Code

Preparation of SiO2-Coated TiO2 Composite Materials with Enhanced Photocatalytic Activity Under UV Light

  • Hu, Shaozheng (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Li, Fayun (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Fan, Zhiping (Institute of Eco-environmental Sciences, Liaoning Shihua University)
  • 투고 : 2012.01.13
  • 심사 : 2012.03.06
  • 발행 : 2012.06.20

초록

$SiO_2$-coated $TiO_2$ composite materials with enhanced photocatalytic activity under UV light was prepared by a simple catalytic hydrolysis method. XRD, TEM, UV-vis spectroscopy, Photoluminescence, FT-IR and XP spectra were used to characterize the prepared samples. The obvious shell-core structure was shown for obtained $SiO_2$@$TiO_2$ sample. The average thickness of the $SiO_2$ coating layer was 2-3 nm. The interaction between $SiO_2$ and $TiO_2$ restrained the recombination of excited electrons and holes. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under UV light. The photocatalytic activity of $SiO_2$@$TiO_2$ was much higher than that of P25 and mechanical mixing sample $SiO_2/TiO_2$. The possible mechanism for the photocatalysis was proposed.

키워드

참고문헌

  1. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  2. Zou, J.; Gao, J. C. J. Hazard. Mater. 2011, 185, 710. https://doi.org/10.1016/j.jhazmat.2010.09.077
  3. Obuchi, E.; Sakamoto, T.; Nakano, K. Chem. Eng. Sci. 1999, 54, 1525. https://doi.org/10.1016/S0009-2509(99)00067-6
  4. Anderson, C.; Bard, A. J. J. Phys. Chem. 1995, 99, 9882. https://doi.org/10.1021/j100024a033
  5. Bui, D. N.; Kang, S. Z.; Li, X. Q.; Mu, J. Catal. Commun. 2011, 13, 14. https://doi.org/10.1016/j.catcom.2011.06.016
  6. Minero, C.; Catozzo, F.; Pelizzetti, E. Langmuir 1992, 8, 481. https://doi.org/10.1021/la00038a029
  7. Cheng, S.; Tsai, S. J.; Lee, Y. F. Catal. Today 1995, 26, 87. https://doi.org/10.1016/0920-5861(95)00071-M
  8. Xu, Y.; Zheng, W.; Liu, W. J. Photochem. Photobiol. A: Chem. 1999, 122, 57. https://doi.org/10.1016/S1010-6030(98)00470-5
  9. Cozzolino, M.; Di Serio, M.; Tesser, R.; Santacesaria, E. Appl. Catal. A: Gen. 2007, 325, 256. https://doi.org/10.1016/j.apcata.2007.02.032
  10. Doolin, P. K.; Alerasool, S.; Zalewski, D. J.; Hoffman, J. F. Catal. Lett. 1994, 25, 209. https://doi.org/10.1007/BF00816302
  11. Fernandez, A.; Caballero, A.; Gonzalez-Elipe, A. R. Surf. Interf. Anal. 1992, 18, 392. https://doi.org/10.1002/sia.740180604
  12. Haukka, S.; Lakomaa, E.; Root, A. J. Phys. Chem. 1993, 97, 5085. https://doi.org/10.1021/j100121a040
  13. Hu, S. Z.; Wang, A. J.; Li, X.; Lowe, H. J. Phys. Chem. Solids 2010, 71, 156. https://doi.org/10.1016/j.jpcs.2009.10.012
  14. Lee, J. W.; Kong, S.; Kim, W. S.; Kim, J. Mater. Chem. Phys. 2007, 106, 39. https://doi.org/10.1016/j.matchemphys.2007.05.019
  15. Yan, X. L.; He, J.; Evans, D. G.; Duan, X.; Zhu, Y. X. Appl. Catal. B 2005, 55, 243. https://doi.org/10.1016/j.apcatb.2004.08.014
  16. Khomane, R. B.; Kulkarni, B. D.; Paraskar, A.; Sainkar, S. R. Mater. Chem. Phys. 2002, 76, 99. https://doi.org/10.1016/S0254-0584(01)00507-7
  17. Liu, Y. M.; Ge, C.; Ren, M.; Yin, H. B.; Wang, A. L.; Zhang, D. Z.; Liu, C. Y.; Chen, J.; Feng, H.; Yao, H. P.; Jiang, T. S. Appl. Surf. Sci. 2008, 254, 2809. https://doi.org/10.1016/j.apsusc.2007.10.021
  18. Koshizaki, N.; Umehara, H.; Oyama, T. Thin Solid Films 1998, 325, 130.
  19. Liu, B. S.; Wen, L. P.; Zhao, X. J. Sol. Energy Mater. Sol. Cells 2008, 92, 1. https://doi.org/10.1016/j.solmat.2007.07.009
  20. Li, F. B.; Li, X. Z.; Hou, M. F.; Cheah, K. W.; Choy, W. C. H. Appl. Catal. A 2005, 285, 181. https://doi.org/10.1016/j.apcata.2005.02.025
  21. Hu, S. Z.; Wang, A. J.; Li, X.; Wang, Y.; Lowe, H. Chem. Asian J. 2010, 5, 1171. https://doi.org/10.1002/asia.200900629
  22. Bellardita, M.; Addamo, M.; Di Paola, A.; Marcì, G.; Palmisano, L.; Cassar, L.; Borsa, M. J. Hazard. Mater. 2010, 174, 707. https://doi.org/10.1016/j.jhazmat.2009.09.108

피인용 문헌

  1. Nanoscale composite materials in the system SiO2–TiO2 vol.65, pp.3, 2013, https://doi.org/10.1007/s10971-012-2947-8
  2. Erratum to: Nanoscale composite materials in the system SiO2–TiO2 vol.68, pp.3, 2013, https://doi.org/10.1007/s10971-013-3217-0
  3. Synthesis of spherical TiO2-SiO2 granules by joint hydrolysis of tetrabutoxytitanium and tetraethoxysilane, with KU-23 polymeric cation exchanger used as matrix vol.87, pp.9, 2014, https://doi.org/10.1134/S1070427214090067
  4. Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: synthesis and characterization vol.26, pp.8, 2015, https://doi.org/10.1007/s10854-015-3198-6
  5. vol.27, pp.4, 2015, https://doi.org/10.1021/cm504243f
  6. /Reduced Graphene Oxide Nanocomposite Anodes for Lithium-Ion Batteries with Highly Enhanced Cyclic Stability vol.7, pp.33, 2015, https://doi.org/10.1021/acsami.5b04652
  7. Deposited on Portland Cement Concrete Blocks vol.92, pp.1, 2016, https://doi.org/10.1111/php.12554
  8. Coating Strategy vol.120, pp.1, 2016, https://doi.org/10.1021/acs.jpcc.5b08893
  9. Enhanced photocatalytic activities of TiO2–SiO2 nanohybrids immobilized on cement-based materials for dye degradation vol.42, pp.4, 2016, https://doi.org/10.1007/s11164-015-2190-3
  10. Synthesis and photocatalytic properties of SiO2/TiO2 nanofibers using templates of TEMPO-oxidized cellulose nanofibers vol.79, pp.1, 2016, https://doi.org/10.1007/s10971-016-4033-0
  11. vol.8, pp.21, 2018, https://doi.org/10.1039/C8CY00991K
  12. Adsorption and Photocatalytic Processes of Mesoporous SiO2-Coated Monoclinic BiVO4 vol.6, pp.2296-2646, 2018, https://doi.org/10.3389/fchem.2018.00415
  13. Characterization and Applications of Nanoparticles Modified in-Flight with Silica or Silica-Organic Coatings vol.8, pp.7, 2018, https://doi.org/10.3390/nano8070530
  14. Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified TiO2 film on glazed ceramic surface vol.266, pp.None, 2012, https://doi.org/10.1016/j.apsusc.2012.11.117
  15. Reduced recombination and enhanced UV-assisted photocatalysis by highly anisotropic titanates from electrospun TiO2-SiO2 nanostructures vol.4, pp.53, 2012, https://doi.org/10.1039/c4ra03498h
  16. Decolorization of Methylene Blue by Ag/SrSnO3 Composites under Ultraviolet Radiation vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/261395
  17. SiO2-coated pure anatase TiO2 catalysts for enhanced photo-oxidation of naphthalene and anthracene vol.34, pp.None, 2012, https://doi.org/10.1016/j.partic.2017.03.001
  18. Simple sonochemical synthesis of Ho2O3-SiO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminant vol.39, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2017.05.016
  19. Nd2O3-SiO2 nanocomposites: A simple sonochemical preparation, characterization and photocatalytic activity vol.42, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2017.11.026
  20. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2 vol.29, pp.15, 2012, https://doi.org/10.1088/1361-6528/aaad44
  21. Rate-Limiting Steps of Dye Degradation over Titania-Silica Core-Shell Photocatalysts vol.9, pp.7, 2012, https://doi.org/10.3390/catal9070583
  22. In Vitro Toxicity of TiO2:SiO2 Nanocomposites with Different Photocatalytic Properties vol.9, pp.7, 2012, https://doi.org/10.3390/nano9071041
  23. A non-noble metal oxide Ti2O3/rGO composite as efficient and highly stable electrocatalyst for oxygen reduction vol.44, pp.52, 2019, https://doi.org/10.1016/j.ijhydene.2019.09.079
  24. Unravelling the interfacial interaction in mesoporous SiO 2 @nickel phyllosilicate/TiO 2 core–shell nanostructures for photocatalytic activity vol.11, pp.None, 2020, https://doi.org/10.3762/bjnano.11.165
  25. Influence of selected reactive oxygen species on the photocatalytic activity of TiO2/SiO2 composite coatings processed at low temperature vol.291, pp.None, 2012, https://doi.org/10.1016/j.apcatb.2020.119685
  26. Functionalities and modification of sol-gel derived SiO2-TiO2 systems for advanced coatings and powders vol.130, pp.1, 2012, https://doi.org/10.2109/jcersj2.21133
  27. Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach vol.82, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2021.105892