DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorophosphate in Acetonitrile

  • 투고 : 2012.02.15
  • 심사 : 2012.03.02
  • 발행 : 2012.06.20

초록

The kinetic studies on the reactions of dipropyl chlorophosphate (3O) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) have been carried out in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are primary normal ($k_H/k_D$ = 1.09-1.01) with the strongly basic anilines while secondary inverse ($k_H/k_D$ = 0.74-0.82) with the weakly basic anilines. The steric effects of the two ligands on the rates are extensively discussed for the anilinolyses of the ($R_1O$)($R_2O$)P(=O or S)Cl-type chlorophosphates and chlorothiophosphates. A concerted mechanism is proposed with a frontside nucleophilic attack involving a hydrogen-bonded four-center-type transition state for the strongly basic anilines and with a backside attack transition state for the weakly basic anilines on the basis of the DKIEs, primary normal and secondary inverse with the strongly and weakly basic anilines, respectively.

키워드

참고문헌

  1. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  2. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  3. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  4. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  5. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
  6. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  7. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  8. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065. https://doi.org/10.5012/bkcs.2008.29.10.2065
  9. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  10. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975. https://doi.org/10.5012/bkcs.2009.30.4.975
  11. Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
  12. Dey, N. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 1403. https://doi.org/10.5012/bkcs.2010.31.5.1403
  13. Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717. https://doi.org/10.1039/c0ob00517g
  14. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1939. https://doi.org/10.5012/bkcs.2011.32.6.1939
  15. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1997. https://doi.org/10.5012/bkcs.2011.32.6.1997
  16. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2306. https://doi.org/10.5012/bkcs.2011.32.7.2306
  17. Adhikary, K. K.; Lumbiny, B. J.; Dey, S.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2628. https://doi.org/10.5012/bkcs.2011.32.8.2628
  18. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3245. https://doi.org/10.5012/bkcs.2011.32.9.3245
  19. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3355. https://doi.org/10.5012/bkcs.2011.32.9.3355
  20. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3783. https://doi.org/10.5012/bkcs.2011.32.10.3783
  21. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3880. https://doi.org/10.5012/bkcs.2011.32.11.3880
  22. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 4185. https://doi.org/10.5012/bkcs.2011.32.12.4185
  23. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 4361. https://doi.org/10.5012/bkcs.2011.32.12.4361
  24. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 4403. https://doi.org/10.5012/bkcs.2011.32.12.4403
  25. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 663. https://doi.org/10.5012/bkcs.2012.33.2.663
  26. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 843. https://doi.org/10.5012/bkcs.2012.33.3.843
  27. Taft, R. W. Steric Effect in Organic Chemistry; Newman, M. S., Ed.; Wiley: New York, 1956; Chapter 3.
  28. Exner, O. Correlation Analysis in Chemistry: Recent Advances; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.
  29. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
  30. Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Chapter 4.
  31. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54.
  32. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099
  33. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  34. Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431. https://doi.org/10.1021/j100175a004
  35. Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008. https://doi.org/10.1021/ja038343v
  36. Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641. https://doi.org/10.1021/ja0511927
  37. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  38. Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, 1992; p 735.
  39. Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
  40. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  41. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  42. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  43. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61. https://doi.org/10.2174/1385272053369349
  44. Omakor, J. E.; Onyido, I.; vanLoon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324.
  45. Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178. https://doi.org/10.1021/ja035167h
  46. Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M. D. J. Am. Chem. Soc. 1997, 119, 5477. https://doi.org/10.1021/ja964217y
  47. Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
  48. Lee, I. Chem. Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
  49. Marlier, J. F. Acc. Chem. Res. 2001, 34, 283. https://doi.org/10.1021/ar000054d
  50. Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217. https://doi.org/10.1016/S0065-3160(06)41004-2
  51. Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736. https://doi.org/10.1021/ja057491d
  52. Gronert, S.; Fajin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330. https://doi.org/10.1021/ja070093l
  53. Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526. https://doi.org/10.1021/ja00085a037
  54. Yamata, H.; Ando, T.; Nagase, S.; Hanamusa, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631. https://doi.org/10.1021/jo00178a010
  55. Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015

피인용 문헌

  1. Kinetics and Mechanism of Pyridinolyses of Ethyl Methyl and Ethyl Propyl Chlorothiophosphates in Acetonitrile vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3372
  2. Kinetics and Mechanism of the Anilinolyses of O-Methyl, O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1096
  3. Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1829
  4. Pyridinolyses of O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2811
  5. -butyl phenyl phosphonochloridothioate in acetonitrile: Synthesis, characterization, kinetic study, and reaction mechanism vol.30, pp.10, 2017, https://doi.org/10.1002/poc.3679
  6. Kinetics and Mechanism of Anilinolysis of Phenyl N-Phenyl Phosphoramidochloridate in Acetonitrile vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3274
  7. Kinetics and mechanism of the anilinolysis of aryl phenyl isothiocyanophosphates in acetonitrile vol.9, pp.None, 2012, https://doi.org/10.3762/bjoc.9.68
  8. Kinetics and Mechanism of Anilinolyses of Ethyl Methyl, Ethyl Propyl and Diisopropyl Chlorothiophosphates in Acetonitrile vol.34, pp.12, 2012, https://doi.org/10.5012/bkcs.2013.34.12.3811
  9. Kinetics and Mechanism of Anilinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile vol.35, pp.9, 2012, https://doi.org/10.5012/bkcs.2014.35.9.2797