Physicochemical and Microbiological Properties of Pork by Various Thawing Methods

해동 방법에 따른 돼지고기의 이화학적.미생물학적 특성

  • Park, Mi-Hye (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Kwon, Ji-Eun (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Kim, Se-Ryoung (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Won, Ji-Hye (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Ji, Jung-Youn (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Hwang, In-Kyeong (Dept. of Food Science and Nutrition, Seoul National University) ;
  • Kim, Mee-Ra (Dept. of Food Science and Nutrition.Center for Beautiful Aging, Kyungpook National University)
  • 박미혜 (경북대학교 식품영양학과) ;
  • 권지은 (경북대학교 식품영양학과) ;
  • 김세령 (경북대학교 식품영양학과) ;
  • 원지혜 (경북대학교 식품영양학과) ;
  • 지정윤 (경북대학교 식품영양학과) ;
  • 황인경 (서울대학교 식품영양학과) ;
  • 김미라 (경북대학교 식품영양학과.장수생활과학연구소)
  • Received : 2011.12.28
  • Accepted : 2012.04.14
  • Published : 2012.04.30

Abstract

This study was carried out to investigate the effects of various thawing methods on the physical and microbiological properties of frozen pork. The frozen pork was thawed using four methods: refrigerator, cold water, room temperature, and microwave oven. Changes in physicochemical properties of thawed pork were analyzed by measuring color, pH, thawing loss and thiobarbituric acid reactive substances (TBARS) values. Changes in the microbiological properties of thawed pork were analyzed by counting total aerobic bacteria and coliform group. L values of thawed pork were significantly increased by all thawing methods for normal thawing time except the uncooked portion of thawed pork via a microwave. However, the a value decreased in pork thawed by all thawing methods. pH values significantly increased in the pork thawed by microwave and by applying two times the normal thawing time. After thawing, thawing loss was highest in the pork thawed at room temperature for two times the normal thawing time. In addition, TBARS values also increased in the pork thawed in a refrigerator and at room temperature for two times the normal thawing time. The total aerobic bacteria count significantly increased in the case of microwave thawing for normal thawing time and it also increased in the pork thawed in a refrigerator and at room temperature for two times the normal thawing time. These results demonstrate that refrigeration and cold water thawing are the most suitable for frozen pork, and that excess thawing should be avoided.

본 연구에서는 냉동 돼지고기를 가정에서 일반적으로 이용하는 해동방법인 냉장해동, 냉수해동, 실온해동, 전자레인지해동으로 해동한 후 이들 해동방법이 돼지고기의 품질에 미치는 영향을 살펴보았다. 또한 전자레인지해동을 제외한 각 해동방법에서 해동시간을 2배로 늘려 같은 실험을 실시하였다. 실험 결과, 색도는 일반 해동시간과 시간을 2배로 연장한 냉장해동, 냉수해동, 실온해동 및 전자레인지해동에서 L값이 대조군에 비해 증가하였으며, a값은 모든 해동방법에서 유의적으로 감소하였다. pH는 전자레인지해동과 해동시간을 연장한 경우, 대조군에 비해 유의적으로 증가하였다. 또한 해동감량은 일반 해동시간과 해동시간을 2배로 연장했을 때 모두 다른 해동방법에 비해 실온해동 시 유의적으로 증가하였다. 지방의 산패 정도를 나타내는 TBARS값은 일반 해동시간으로 해동한 경우에는 해동방법에 따라 유의적인 차이를 나타내지는 않았으나, 시간을 2배로 연장한 냉장해동과 실온해동 시에는 대조군보다 유의적으로 증가하였다. 일반 해동시간으로 해동 시에 일반 총균수는 전자레인지해동시 유의적으로 증가하였으며, 해동시간을 2배로 연장한 경우에는 냉수해동과 실온해동 시 대조군에 비하여 유의적으로 증가하였다. 또한 해동시간이 2배로 연장된 경우에 일반세균 수는 각 해당 해동방법으로 일반 해동시간으로 해동했을 때보다 미생물 수가 유의적으로 증가하였다. 전체적으로 볼 때 일반 해동시간으로 해동했을 때 냉장해동과 냉수해동이 다른 해동방법에 비해 돼지고기의 품질 변화를 적게 일으켜 바람직한 해동방법으로 나타났으며, 해동시간이 길어지면 미생물 증식, 산패도 증가, 색 변화 등 품질 저하가 크게 일어나기 때문에, 필요 이상의 시간으로 해동하지 않도록 유의해야 할 것이다. 또한 전자레인지해동은 단시간에 열을 발생하므로 해동이 빠르고 육즙 손실이 적어 육류 해동에 자주 이용되고 있으나, 균일하게 해동되지 않는 문제점이 있기 때문에, 큰 덩어리로 해동하지 않도록 유의해야 할 필요가 있는 것으로 보인다.

Keywords

References

  1. 농림수산식품부 (2008) 농림수산통계자료.
  2. 식품의약품안전청 (2010) 식품공전. 식약청 고시.
  3. Akamittath JG, Brekke CJ, Schanus EG (1990) Lipid oxidation and color stability innrestructured meaonsystems duridatfrozen storaae. J Food Sci 55: 1513-1517. https://doi.org/10.1111/j.1365-2621.1990.tb03557.x
  4. Benjakul S, Bauer F (2001) Biochemical and physicochemical changes in catfish (Silurus glanis Linne) muscle as influenced by different freeze-thaw cycles. Food Chem 72: 207-217. https://doi.org/10.1016/S0308-8146(00)00222-3
  5. Berry BW (1994) Fat level, high temperature cooking and degree of doneness affect sensory, chemical and physical properties of beef patties. J Food Sci 59: 10-14. https://doi.org/10.1111/j.1365-2621.1994.tb06885.x
  6. Brewer MS, Wu SY (1993) Display, packaging, and meat block location effects on color and lipid oxidation of frozen lean ground beef. J Food Sci 58: 1219-1223. https://doi.org/10.1111/j.1365-2621.1993.tb06152.x
  7. Buege JA, Aust SD (1987) Microsomal lipid peroxidation. Method Enzymol 52: 302-310.
  8. Farouk MM, Wieliczko KJ, Merts I (2004) Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci 66: 171-179. https://doi.org/10.1016/S0309-1740(03)00081-0
  9. FDA Food Code (1999) U. S. Public health service, U.S. Dept. of Health and Human Services. Pub. No. PB99-115925. Washington, D.C.
  10. Fennema OR (1973) Nature of freezing process. In: Low Temperature Preservation of Foods and Living Matter, Eds: Fennema OR, Powrie WD, Marth EH. Marcel Dekker Inc, New York. pp 151-222.
  11. Hamm R (1982) Postmortem changes in muscle with regard to processing of hot-boned beef. Food Technol 37: 105-115.
  12. Hawrokwitz F, Schwerin P, Yenson MM (1941) Destruction of hemin and hemoglobin by the action of unsturated fatty acid and oxygen. J Biol Chem 140: 353-359.
  13. Hong GP, Min SG, Ko SH, Shim KB, Seo EJ, Choi MJ (2007) Effects of brine immersion and electrode contact type low voltage ohmic thawing on the physico-chemical properties of pork meat. Korean J Food Sci Ani Resour 27: 416-423. https://doi.org/10.5851/kosfa.2007.27.4.416
  14. Huff-Lonergan E, Lonergan SM (2005) Mechanism of waterholding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci 71: 194-204. https://doi.org/10.1016/j.meatsci.2005.04.022
  15. Jeong JY, Yang HS, Kang GH, Lee JI, Park GB, Joo ST (2006) Effect of freeze-thaw process on myoglobin oxidation of pork loin during cold storage. Korean J Food Sci Ani Resour 26: 1-8.
  16. Jung IC, Moon YH (1995) Changes in physicochemical properties and palatability during refrigerated storage after thawing of imported frozen beef tenderlorin. Korean J Food Sci Ani Resous 15: 156-162.
  17. Jung SW, Lee NJ, Lee KG, Hong KW, Lee SJ (2006) Changes in microbiological contamination in tuna (Katsuwonus pelamis) of various thawing temperature. Food Engineering Progress 10: 186-191.
  18. Kang MS, Kang CG, Lee SK (2007) Comparison of quality characteristics of Korean native black pork and modern genotype pork during refrigerated storage after thawing. Korean J Food Sci Ani Resour 27: 1-7. https://doi.org/10.5851/kosfa.2007.27.1.1
  19. Kim CJ, Lee CH, Lee ES, Ma KJ, Song MS, Cho JK, Kang JO (1998) Studies on physico-chemical characteristics of frozen beef at as influenced by thawing rates. Korean J Food Sci Ani Resour 18: 142-148.
  20. Kim YH, Yang SY, Lee MH (1990) Quality changes of thawed porcine meat on the thawing methods. Korean J Food Sci Technol 22: 123-128.
  21. Lee WH (1989) Effect of freezing and thawing conditions on meat qualities of pork loin. MS Thesis Kon Kuk University, Seoul. pp 8-14.
  22. Miller AJ, Ackerman SA, Palumbo SA (1980) Effects of frozen storage on functionality of meat for processing. J Food Sci 45: 1466-1471. https://doi.org/10.1111/j.1365-2621.1980.tb07541.x
  23. Park HS (2010) Quality characteristics of Sulgidduk by addition of Jerusalem Artichoke (Helianthus tuberosus L.) powder. Korean J Culinary Research 16: 259-267.
  24. Park KS, Lee KS, Park HS, Choi YJ, Kang SJ, Yang JB, Hyon JS, Jung IC, Moon YH (2011) Quality characteristics and free amino acid content of seasoning pork meat aged by red wine. J Life Science 21: 74-80. https://doi.org/10.5352/JLS.2011.21.1.74
  25. Sebranek JG, Sang PN, Rust RE, Topel DG, Kraft AA (1978) Influence of liquid nitrogen, liquid carbon dioxide and mechanical freezing on sensory properties of ground beef patties. J Food Sci 43: 843.
  26. Song MS, Lee SJ (2002) Effect of freezing/thawing cycles on physical properties of beef. Food Engineering Progress 6: 101-108.
  27. Speck ML, Ray B (1997) Effects of freezing and storage on microorganisms in frozen foods: A review. J Food Prot 60: 333-336.
  28. Turner EW, Paynter WD, Montie EJ, Bessert MW, Struck GH, Olson FC (1954) Use of the 2-thiobarbithuric acid reagent to measure rancidity in frozen pork. Food Technol 8: 326-330.
  29. Wilson BR, Person AM, Shorland FB (1987) Effect of total lipids and phospholipids on warmed-over flavor in red muscle and white muscle from several species as measured by the thiobarbituric acid analysis. J Agric Food Chem 24: 72-78.
  30. Yu LH, Lee ES, Jeong JY, Paik HD, Choi JH, Kim CJ (2005) Effects of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles. Meat Sci 71: 375-382. https://doi.org/10.1016/j.meatsci.2005.04.020