DOI QR코드

DOI QR Code

Geographic homogeneity and high gene flow of the pear psylla, $Cacopsylla$ $pyricola$ (Hemiptera: Psyllidae), detected by mitochondrial COI gene and nuclear ribosomal internal transcribed spacer 2

  • Kang, Ah-Rang (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Baek, Jee-Yeon (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Sang-Hyun (Korean Pear Export Research Organization, Chonnam National University) ;
  • Cho, Young-Sik (National Institute of Horicultural and Herbal Science, Rural Development Administration) ;
  • Kim, Wol-Soo (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Han, Yeon-Soo (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Ik-Soo (College of Agriculture & Life Sciences, Chonnam National University)
  • Received : 2011.03.05
  • Accepted : 2011.06.04
  • Published : 2012.04.30

Abstract

The pear psylla, $Cacopsylla$ $pyricola$ (Hemiptera: Psyllidae), is a serious insect pest of commercial pear crops. The species, which resides on pear trees throughout its life cycle, is rapidly spreading in some regions of the world. The population genetic structure of the species collected from several pear orchards in Korea was studied to understand the nature of dispersal and field ecology of the species. The 658-bp region of mitochondrial COI gene and the 716-bp long complete internal transcribed spacer 2 (ITS2) of the nuclear ribosomal DNA were sequenced. Unlike other previously studied insect pests, the COI-based genetic diversity of the pear psylla was extremely low (maximum sequence divergence of 0.15%). This finding allowed us to conclude that the species may have been introduced in Korea relatively recently. ITS2 sequence-based analyses of phylogeny, population differentiation, gene flow, and hierarchical population structure all concordantly suggested that the pear psylla populations in Korea are neither genetically isolated nor hampered for gene flow. These genetic data are concordant with the dispersal of an overwintering winterform morph outside the non-pear habitat in the fall.

Keywords

References

  1. An JH, Yiem MS, Kim DS. 1996. Effects of photoperiod and temperature on formation and fecundity of two seasonal forms of Psylla pyricola (Homoptera: Psyllidae). Korean J Appl Entomol. 35:205-208.
  2. An HS, Hong SW, Kim EM, Lee J-H, Noh JK, Kim HC, Park CJ, Min BH, Myeong J-I. 2010. Comparative genetic diversity of wild and released populations of Pacific abalone Haliotis discus discus in Jeju, Korea, based on cross-species microsatellite markers including two novel loci. Anim Cells Syst. 14:305-313. https://doi.org/10.1080/19768354.2010.525813
  3. Avise JC. 1994. Molecular Markers, Natural History and Evolution. New York: Chapman and Hall.
  4. Bae JS, Kim I, Kim SR, Jin BR, Sohn HD. 2001. Mitochondrial DNA sequence variation of the mushroom pest flies, Lycoelia mali (Diptera: Sciaridae), and, Coboldia fuscipes (Diptera: Scatopsidae), in Korea. App Entomol Zool Jpn. 36:451-457. https://doi.org/10.1303/aez.2001.451
  5. Burts EC. 1970. The pear psylla in central Washington. Wash Agric Exp Stn Circ. 516:13.
  6. Burts EC, van den Baan HE, Croft BA. 1989. Pyrethroid resistance in pear psylla, Psylla pyricola Forster (Homoptera: Psyllidae), and synergism of pyrethroids with piperonyl butoxide. Can Entomol. 121:219-223. https://doi.org/10.4039/Ent121219-3
  7. Croft BA, Burts EC, van de Baan HE, Westigard PH, Riedl H. 1989. Local and regional resistance to fenvalerate in Psylla pyricola Foerster (Homoptera: Psyllidae) in western North America. Can Entomol. 121:121-129. https://doi.org/10.4039/Ent121121-2
  8. Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes - Application to human mitochondrial DNA restriction data. Genetics. 131:479-491.
  9. Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online. 1:47-50.
  10. Felsenstein J. 1985. Confidence limits on phylogenetics: an approach using the bootstrap. Evolution. 29:783-791.
  11. Fitch WM. 1971. Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 20:406-416. https://doi.org/10.2307/2412116
  12. Follett PA, Croft BA, Westigard PH. 1985. Regional resistance to pesticides in Psylla pyricola from Oregon pear orchards. Can Entomol. 117:565-573. https://doi.org/10.4039/Ent117565-5
  13. Frankham R. 1996. Relationship of genetic variation to population size in wildlife. Conserv Biol. 10:150-1508.
  14. Hartl DL, Clark AG. 1989. Principles of population genetics. 2nd ed. Sunderland (MA): Sinauer Associates.
  15. Hebert PD, Cywinska A, Ball SL, de Ward JR. 2003. Biological identification through DNA barcodes. Proc R Soc Lond (B) 270:313-321. https://doi.org/10.1098/rspb.2002.2218
  16. Holsinger KE, Mason-Gamer RJ. 1996. Hierarchical analysis of nucleotide diversity in geographically structured populations. Genetics. 142:629-639.
  17. Horton DR. 1993. Diurnal patterns in yellow trap catch of pear psylla (Homoptera: Psylla): differences between sexes and morphotypes. Can Entomol. 125:761-767. https://doi.org/10.4039/Ent125761-4
  18. Horton DR, Lewis TM 1996. Effects of fenoxycarb on ovarian development, spring fecundity and longevity in winterform pear psylla. Entomol Exp Appl. 81:181-187. https://doi.org/10.1111/j.1570-7458.1996.tb02030.x
  19. Horton DR, Higbee BS, Unruh TR, Westigard PH. 1992. Spatial characteristic and effects of fall density and weather on overwintering loss of pear psylla (Homoptera: Psyllidae). Environ Entomol. 21:1319-1332. https://doi.org/10.1093/ee/21.6.1319
  20. Horton DR, Burts EC, Unruh TR, Krysan JL, Coop LB, Croft BA. 1994. Phenology of fall dispersal by winterform pear psylla (Homoptera: Psyllidae) in relation to leaf fall and weather. Can Entomol. 126:111-120. https://doi.org/10.4039/Ent126111-1
  21. Jeong H-Y, Kim D-S, Cho M-R, Yiem MS. 2000. Recent status of major fruit tree pest occurrences in Korea. J Kor Soc Hort Sci. 41:607-612.
  22. Jeong HC, Kim JA, Im HH, Jeong HU, Hong MY, Lee JL, Han YS, Kim I. 2009. Mitochondrial DNA sequence variation of the swallowtail butterfly, Papilio xuthus, and the cabbage butterfly, Pieris rapae. Biochem Genet. 47:165-178. https://doi.org/10.1007/s10528-008-9214-2
  23. Ji Y, Zhang D, He L. 2003. Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol Ecol Notes. 3:581-585. https://doi.org/10.1046/j.1471-8286.2003.00519.x
  24. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059-3066. https://doi.org/10.1093/nar/gkf436
  25. Keller I, Korner-Nievergelt F, Jenni L. 2009. Within-winter movements: a common phenomenon in the Common Pochard Aythya ferina. J Ornithol. 150:483-494. https://doi.org/10.1007/s10336-008-0367-x
  26. Kim I, Bae JS, Sohn HD, Kang PD, Ryu KS, Sohn BH, Jeong WB, Jin BR. 2000a. Genetic homogeneity in the domestic silkworm, Bombyx mori, and phylogenetic relationship between B. mori and wild silkworm, B. mandarina, using mitochondrial COI gene sequences. Int J Indust Entomol. 1:9-17.
  27. Kim DS, Cho MR, Jeon HY, Yiem MS, Lee JH. 2000b. Population trends and temperature-dependent development of pear psylla, Cacopsylla pyricola Foerster (Homoptera: Psyllidae). Korean J Appl Entomol 39:73-82.
  28. Kim KY, Jang SK, Park DW, Hong MY, Oh KH, Kim KY, Hwang JS, Han YS, Kim I. 2007. Mitochondrial DNA sequence variation of the tiny dragonfly, Nannophya pygmaea (Odonata: Libellulidae). Int J Indust Entomol. 15:47-58.
  29. Kim HY, Lee KY, Lee SB, Kim SR, Hong MY, Kim DY, Kim I. 2008. Mitochondrial DNA sequence variation of the mason bee, Osmia cornifrons (Hymenoptera: Apidae). Int J Indust Entommol. 16:75-86.
  30. Kim MJ, Yoon HJ, Im HH, Jeong HU, Kim MI, Kim SR, Kim I. 2009. Mitochondrial DNA sequence variation of the bumblebee, Bombus ardens (Hymenoptera: Apidae). J Asia Pacific Entomol. 12:133-139. https://doi.org/10.1016/j.aspen.2009.02.003
  31. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  32. Li J, Choi YS, Kim I, Sohn HD, Jin BR. 2006. Genetic variation of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in China inferred from mitochondrial COI gene sequences. Euro J Entomol. 103:605-611. https://doi.org/10.14411/eje.2006.081
  33. Maruyama T, Kimura M. 1980. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci USA. 77:6710-6714. https://doi.org/10.1073/pnas.77.11.6710
  34. Navajas M, Lagnel J, Gutierrez J, Boursot P. 1998. Specieswide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742-752. https://doi.org/10.1046/j.1365-2540.1998.00349.x
  35. Puillandre N, Dupas S, Dangles O, Zeddam J-L, Capdevielle-Dulac C, Barbin K, Torres-Leguizamon M, Silvain J-F. 2008. Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions. 10:319-333. https://doi.org/10.1007/s10530-007-9132-y
  36. Swofford DL. 2002. $PAUP^*$ Phylogenetic analysis using parsimony ($^*and$ other method) ver. 4.10. Sunderland (MA): Sinauer Associates.
  37. Unruh TR. 1990. Genetic structure among 18 west coast pear psylla populations: implications for the evolution of resistance. Am Entomol. 36:37-43. https://doi.org/10.1093/ae/36.1.37
  38. Tang J, Toe L, Back C, Unnasch TR. 1996. Intra-specific heterogeneity of the rDNA internal transcribed spacer in the Simulium damnosum (Diptera: Simuliidae) complex. Mol Biol Evol. 13:244-252. https://doi.org/10.1093/oxfordjournals.molbev.a025561
  39. Westigard PH, Zwick RW. 1972. The pear psylla in Oregon. Oregon Stn Agric Bull. 122.

Cited by

  1. Chemosensory Gene Families in the Oligophagous Pear Pest Cacopsylla chinensis (Hemiptera: Psyllidae) vol.10, pp.6, 2012, https://doi.org/10.3390/insects10060175
  2. DNA barcoding of pear psyllids (Hemiptera: Psylloidea: Psyllidae), a tale of continued misidentifications vol.110, pp.4, 2020, https://doi.org/10.1017/s0007485320000012