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We investigated the effects of fadrozol, an aromatase inhibitor (AI), and 17a-methyltestosterone (MT) on the
induction of sex change in juvenile longtooth grouper Epinephelus bruneus, via histological observation of gonads.
Changes in the mRNA expression of GtH subunits (FSH-b and LH-b) in the pituitary, and estradiol-17b (E2) and
11-ketotestosterone (11-KT) levels in the blood were also surveyed after AI and MT treatment. Juvenile longtooth
groupers (113917 g body weight; 16.291.2 cm body length) received intramuscular injections of AI at 3 (3-AI) and
5 (5-AI) mg/kg BW doses and MT at a 5 mg/kg BW (5-MT) dose. At week 7 post-injection, 3-AI and 5-MT oocytes
were degenerated, and gonads of the 5-AI group initiated spermatogenesis. At week 21 post-injection, 3-AI- and
5-MT-treated gonads contained spermatogonia and spermatocytes, while 5-AI treatment induced advanced stages of
spermatogenesis. The serum E2 level showed no significant differences throughout the experimental period, whereas
that of 11-KT was significantly elevated in the 5-AI group at weeks 7 and 21 post-injection. A significant increase in
the expression of FSH-b mRNA was evident in the 5-AI group at week 21 post-injection. In contrast, LH-b mRNA
expression did not significantly differ among groups during the experimental period. These results imply that sex
change has two stages in the longtooth grouper. In the first stage, oocytes are degenerated by the stimulation by
11-KT, and in the second stage spermatogenesis occurs, owing to the co-effects of 11-KT and FSH-b.
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Introduction

Estrogens play key roles in ovarian differentiation and

development in vertebrates, and the role of aromatase,

an enzymatic complex responsible for converting

androgens into estrogens, has been extensively investi-

gated in fishes (Young et al. 1983; Desvages and Pieau

1992; Nagahama et al. 1993; Min et al. 2009). Estrogen

biosynthesis can be reduced by inhibiting aromatase

activity using non-steroidal aromatase inhibitors (AI),

such as fadrozole (CGS 16949A), or steroidal aroma-

tase inhibitors, such as 1,4,6-androstatriene-3,17-dione

(ATD), both in vivo and in vitro in mammals (Steel

et al. 1987; Schieweck et al. 1988) and in vivo in

reptiles, amphibians and birds (Desvages and Pieau

1992; Lance and Bogart 1992; Chardard et al. 1995;

Smith et al. 1997). Previous studies on fishes have

reported masculinization induction in tilapia

Oreochromis niloticus, coho salmon Oncorhynchus

kisutch, and olive flounder Paralichthys olivaceus by

fadrozole injection (Piferrer et al. 1994; Kitano et al.

2000; Kwon et al. 2000). Sex change in groupers, which

are protogynous hermaphroditic fish, has also been

induced by fadrozole injection (Bhandari et al. 2004a;

Li et al. 2006; Nozu et al. 2009). However, although

masculinization has been observed in sexually mature

groupers, the phenomenon has never been investigated

in juvenile groupers.

Usually, masculinization of protogynous hermaph-

roditic fish is tested using 17a-methyltestosterone (MT;

Yamazaki 1983; Kitano et al. 2000; Song et al. 2005).

Despite the marked effect of MT on masculinization,

MT treatment has negative effects on body growth,

gonadal size, and sperm volume (Fishelson 1975;

Josefa et al. 1994; Lim 2004; Monica et al. 2005). To

make the sperm more stable, sex change must be

induced at the state close to nature to control

endogenous hormones (Bhandari et al. 2004a, 2004b;

Li et al. 2006). The hypothalamus-pituitary-gonadal

(HPG) axis mainly regulates reproductive processes in

teleosts. Signals from external factors regulate hormo-

nal secretion in the HPG axis, whereas gonadotropin-

releasing hormone (GnRH) from the hypothalamus

stimulates the release of two gonadotropins (GtHs) in

the pituitary gland, followed by release of the gonadal

steroid hormones, androgen and estrogen (Pankhurst

1998). Of the two GtHs, follicle-stimulating hormone

(FSH) is involved in regulating early gametogenesis,

while luteinizing hormone (LH) regulates late gameto-

genesis and final maturation (Swanson et al. 1991;

Schulz et al. 2001). Previous studies have revealed that

biological activation of GtHs differs among species or
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maturity stages even in the same species. How GtHs

activate the production of sex steroid hormones during

sex change in juvenile groupers is still unknown.

Despite numerous studies on the reproductive cycle of

protogynous hermaphrodite fishes, only a few studies

have investigated the activation of endocrinal mechan-

isms in fishes that undergo sex change from female to

male (Bhandari et al. 2003; Alam et al. 2006; Li et al.
2006).

In this study, we examined the effects of AI and

MT treatment on the artificial induction of sex

change in the juvenile longtooth grouper Epinephelus

bruneus. The effectiveness of hormonal treatment was

evaluated by observing gonadal histology and mea-

suring mRNA expression of GtH subunits in the

pituitary and sex steroid hormones in the blood
during masculinization.

Materials and methods

Fish and experimental design

Juvenile longtooth groupers (113917 g body weight:

BW; 16.291.2 cm body length: BL) were used in the

experiments. All of the fish were reared in indoor

tanks (270 L capacity) with recirculating and aeration

systems. Water temperature was maintained at

21918C. The fish were fed a commercial diet
(Daehan Co., Busan, Korea) twice a day. The

experiment was conducted for 21 weeks beginning

30 January 2007. Fish were allocated randomly into

four groups (n�20/group), which were injected with

AI (Fadrozole, CGS16949A, Novartis, Summit, NJ,

USA) at 3 and 5 mg/kg BW doses (3-AI and 5-AI

groups, respectively), MT (Sigma-Aldrich, St. Louis,

MO, USA) at a 5 mg/kg BW dose (5-MT group), or
vehicle only (control). AI and MT were blended with

ethanol and coconut oil (1:5 v/v). Intramuscular

injections were given behind the dorsal fin on the

right side. Fish were sampled at weeks 7 and 21 post-

injection, as were untreated controls.

After anesthetizing with 200 mg/L of 2-phenox-

yethanol (Sigma), the BL and BW of each fish were

measured (n�3/group). Gonads were removed for
histological observation. Blood samples were collected

from the caudal vein, using a non-heparinized syringe.

Serum samples were separated by centrifugation at

3000 rpm for 10 min at 48C and stored at �208C until

analysis. The pituitaries were collected and immediately

frozen at �808C until extraction of total RNA.

Histological examination

Gonads were preserved in Bouin’s solution for 24 h,
and then transferred into 70% ethanol. Subsequently,

the fixed gonads were dehydrated with ethanol,

embedded in histoparaffin, and sectioned at 5�6

mm. Sections were stained with Hansen’s hematoxylin

and 0.5% eosin for observation under a light micro-

scope.

Radioimmunoassay of sex steroids (11-KT, E2)

The 11KT and E2 serum levels were measured by

radioimmunoassay (RIA), using the method of Ko-

bayashi et al. (1987), which generated intra-assay

coefficients of variance of 9.20% (n �3) and 9.66%

(n �3) for 11KT and E2, respectively. The 11KT and
E2 antiserums were kindly provided from Dr. Alexis

Fostier (INRA, France). Inter-assay coefficients of

variance were 6.50% (n �3) and 6.02% (n �3), with

minimum detectable limits of 12.73 pg/mL and 7.66 pg/

mL for 11KT and E2, respectively.

Expressions of FSH-b and LH-b mRNA

The mRNA levels of longtooth grouper FSH-b and

LH-b were evaluated using quantitative real-time

polymerase chain reaction (qRT-PCR). Briefly, total

RNAs were extracted from the pituitaries (n�3/
group) using RNAiso (TakaraBio Inc., Otsu, Shiga,

Japan), and cDNAs were synthesized from 1 mg of

extracted total RNA using Ready-To-Go You-Prime

First-Strand Beads (GE Healthcare, Giles, Buckin-

ghamshire, UK) in 25-mL reaction volumes. Target-

specific primer sets and SYBR green-labeled TaqMan

probes for qRT-PCR were designed from FSH-b and

LH-b longtooth grouper cDNA sequences (GenBank
accession numbers: FSH-b, EF583919; LH-b,

EF583920), as shown in Table 1. The PCR reaction

was performed with 10 pmole of each primer and

probes, 5 mL cDNA, and 12.5 mL iQ SYBR Green

Supermix (Bio-Rad, Hercules, CA, USA) in a 25-mL

final volume. Serially diluted FSH-b and LH-b cDNA

cloned plasmids were used for creating standard

curves. A negative control PCR reaction without the
template showed no PCR product amplification (data

not shown). The initial denaturation step was per-

formed at 908C for 2 min, and 45 amplification cycles

were performed (958C for 15 s and 608C for 1 min)

using the Chromo 4TM Four-Color Real-Time System

(Bio-Rad). All PCR reactions were duplicated.

Statistical analysis

All data were presented as means9standard error and

subjected to two-way analysis of variance (ANOVA),

followed by Duncan’s multiple-range test (Duncan

1955). Statistical significance was determined at
PB0.05.
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Table 1. Oligonucleotide primers used in real time qRT-PCR

Gene Oligonucleotide primers Amplicon length (base pair)

FSH-b Forward primer 5?-CTGCCACTCCGACTGTCATC-3?
Taqman probe 5?-ACCAGCATCAGCATCCCTGTGGAGA-3? 101

Reverse primer 5?-GGTAACACTGTCCTTCACATATGG-3?
LH-b Forward primer 5?-TTTGAGCTTCCTGACTGTCCTC-3? 115

Taqman probe 5?-ACCCGACTGTCACCTACCCTGTGGC-3?
Reverse primer 5?-GGCTCTCGAAGGTGCAGTC-3?

Figure 1. Changes of gonadal development in juvenile longtooth grouper E. bruneus 7 weeks after treatment with aromatase

inhibitor (AI, fadrozole) and 17a-methyltestosterone (MT). A, initial control; B, control; C, 5 mg MT/kg BW; D, 3 mg AI/kg BW;

E, 5 mg AI/kg BW. Ao, atretic oocyte; Og, oogonia; Po, perinucleolus oocyte; St, spermatid; Sz, spermatozoa; Sc, spermatocyte.

Scale bar 50 mm.
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Results

Changes in gonadal histology

The gonads of the initial control group contained many
oogonia and a few oocytes at the perinucleolus stage

(Figure 1A). The gonads of the control group at weeks

7 and 21 post-injection were similar in appearance,

although perinucleolus-stage oocytes gradually in-

creased in diameter during the experimental period

(Figure 1B and 2A). At week 7 post-injection, the

gonads of the 5-MT and 3-AI groups contained

perinucleolus oocytes, as well as a few degenerated
oocytes (Figure 1C,D). The gonads of the 5-AI group

contained various germ cells undergoing spermatogen-

esis, but no germ cells of ovarian origin. Spermatozoa

were abundant in the gonads of this group (Figure 1E,

Table 2). The gonads of the 5-MT group contained

mostly oogonia and degenerated oocytes, as well as a

few spermatogonia undergoing spermatogenesis to

spermatocytes (Figure 2B), which were also observed
in the gonads of the 3-AI group (Figure 2C). The

gonads of the 5-AI group contained oogonia and

perinucleolus oocytes, and the spermatogenesis of

spermatogonia to spermatocytes was observed more

frequently in this group than in the other groups

(Figure 2D, Table 3).

Changes in sex hormones (11-KT, E2)

Serum E2 levels of all groups showed no significant

differences from the initial level to week 7 post-
injection, except in the control group (Figure 3A). E2

increased significantly in the 5-AI group at weeks 21

post-injection. In contrast, 11-KT increased signifi-

cantly in the 5-AI group at weeks 7 and 21 post-

injection. However, no changes were detected in the

3-AI- and 5-MT-treated groups (Figure 3B).

mRNA expression of GtH subunits (FSH-b and LH-b)

The expression level of FSH-b mRNA at week 7 was

generally higher in the control than in the other groups.

In contrast, the expression levels of FSH-b mRNA

after week 21 did not differ significantly among the

control, 5-MT, and 3-AI groups, and that of the 5-AI
group was highest among the four groups (Figure 4A).

The expression level of LH-b mRNA after week 7 was

significantly higher in the control than in the other

groups, but did not differ significantly among groups

after week 21 (Figure 4B).

Discussion

P450arom is a key enzyme that converts androgen to

E2, which plays a key role in ovarian differentiation

and development in teleost fishes (Nakamura et al.
1989, 1998; Nagahama et al. 1993). In a previous

study of honeycomb grouper E. merra, fish had

undergone a complete sex change from female to

functional male at 6 weeks after AI implantation,

with almost all males undergoing the transformation.

Similarly, AI treatments in early developmental stages

caused sex reversals from genetic females to pheno-

typic males in olive flounder Paralichthy solivaceus

(Kitano et al. 2000) and tilapia Oreochromis niloticus

(Kwon et al. 2000; Afonso et al. 2001). In hermaph-

roditic fish, the capability of the gonia cell to

Table 2. Distribution of germ cell in juvenile longtooth grouper E. bruneus after 7 weeks treatment of aromatase inhibitor (AI, 6

fadrozole) and 17a-methyltestosterone (MT)

Germ cell phases

Treatment (mg/kg � BW) BW (g) BL (cm) Og Po Ao Sg Sc St Sz Remarks

Control 137 17.3 �� ��� � � � � � Oogenesis

138 17.7 �� ��� � � � � � Oogenesis

143 16.8 �� ��� � � � � � Oogenesis

5-MT 163 18.5 ��� � � � � � �
154 17.7 ��� � � � � � �
144 18.2 ��� � � � � � �

3-AI 126 17.3 ��� � � � � � �
163 18.7 ��� � � � � � �
143 17.6 �� �� � � � � �

5-AI 116 16.9 �� �� � � � � � Degenerated oocytes

191 18.9 � � � � � � ��� Induced complete sex reversal

154 18.0 �� �� � � � � � Degenerated oocytes

Abbreviations: BW, body weight; BL, body length; O g, oogonia; Po, peri-nucleolus oocyte; Ao, atretic oocyte; Sg, spermatogonia; Sc, 8
spermatocyte; St, spermatid; Sz, Spermatozoa; �, none; �, a few; ��, intermediate; ���, abundant
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differentiate between female and male is stimulated

by other factors in the gonad (Devlin and Nagahama

2002).

Histological changes in honeycomb grouper and

red-spotted grouper E. akkara gonads resulting from

AI treatment are characterized by the degeneration of

perinucleolus oocytes in early transitional stages of sex

change and an increased number of spermatogenic

germ cells in late transitional stages of sex change

(Bhandari et al. 2004a, 2004b; Li et al. 2006). Taken

together with these findings, our results demonstrate

that the masculinization of juvenile longtooth grouper

is controlled by an exogenous hormonal treatment and

is accompanied by the degeneration of oocytes in the

Figure 2. Changes of gonadal development in juvenile longtooth grouper E. bruneus 21 weeks after treatment with aromatase

inhibitor (AI, fadrozole) and 17a-methyltestosterone (MT). A, control; B, 5 mg MT/kg BW; C, 3 mg AI/kg BW; D, 5 mg AI/kg

BW. Ao, atretic oocyte; Po, perinucleolus oocyte; Sc, spermatocyte. Scale bar �50 ?m.

Table 3. Distribution of germ cell in juvenile longtooth grouper E. bruneus gonad after 21 weeks treatment of aromatase inhibitor

(AI, fadrozole) and 17a-methyltestosterone (MT)

Germ cell phases

Treatment (mg/kg � BW) BW (g) BL (cm) Og Po Ao Sg Sc St Sz Remarks

Control 299 24.5 � ��� � � � � � Oogenesis

227 23.0 � ��� � � � � � Oogenesis

274 27.5 � ��� � � � � � Oogenesis

5-MT 312 28.0 ��� �� � � � � � Spermatogenesis

265 22.5 � � � � � � � No germ cell

277 28.0 � �� � � � � � Spermatogenesis

3-AI 232 22.5 � �� � � � � � Spermatogenesis

242 22.0 � �� � � � � � Spermatogenesis

216 22.5 � � � � � � � Spermatogenesis

5-AI 242 24.0 � � � � � � � Spermatogenesis

194 22.0 �� � � � �� � � Spermatogenesis

210 23.0 � � � � � � � Spermatogenesis

Abbreviations: BW, body weight; BL, body length; Og, oogonia; Po, peri-nucleolus oocyte, Ao, atretic oocytes; Sg, spermatogonia; Sc,
spermatocyte; St, spermatid; Sz, Spermatozoa; �, none; �, a few; ��, intermediate; ���, abundant
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first step of masculinization and then proliferation of

spermatogenic germ cells in the second step.

With the exception of controls, we found no

significant differences among the four experimental

groups in serum E2 levels from the initial point to week

21. In contrast, 11-KT increased significantly in the 5-

AI-treated groups by weeks 7 and 21 post-injection.

However, 11-KT was not detected in the other groups.

Generally, E2 is involved in ovarian differentiation and

development (Fostier et al. 1983). Among protogynous

hermaphrodites, serum E2 levels have been found to be

significantly reduced during sex change in honeycomb

grouper and saddleback wrasse Thalassoma duperrey

(Bhandari et al. 2003). This suggests that a decreased

serum E2 level induces oocyte degeneration during sex

change in protogynous hermaphrodite fish. E2 is a key

hormone that induces ovarian differentiation and

development. However, in Japanese eel (Anguilla

japonica), E2 induces spermatogenesis (Miura et al.

1999, 2003). Thus, further research on the physiological

function of E2 in juvenile fishes is needed. 11-KT

concentrations, which appeared to be low, were not

detected in 3-AI- and 5-MT- treated groups. Although

11-KT is the major androgen in most teleosts and is

associated with spermatogenesis and testis develop-

ment (Fostier et al. 1983; Hunter and Donaldson 1983;

Bahndari et al. 2003; Li et al. 2006), it has not been

detected or was detected but at remarkably low levels in

previous studies (Yeung et al. 1987; Kroon et al. 2003).

Thus, more research on the role of sex steroid

hormones in hermaphrodite and juvenile fishes is

needed.

Our study showed that the expression level of FSH-

b mRNA is low in degenerated oocytes in the first step

of sex change and high during spermatogenesis in the

second step. In contrast, LH-b expression was low

throughout the experimental period. These results

suggest that FSH-b may be a regulator of sex change.

However, LH-b is not a physiological regulator of sex

change in juveniles. The roles of GtH subunits (FSH-b,

LH-b) have been investigated in many teleosts, and

different activation patterns have been found in

different fishes (Schulz and Miura 2002). The most

common and extensively studied pattern is that in

salmonoids, in which FSH plasma levels are high

during spermatogenesis, whereas those of LH are

undetectable during spermatogenesis, increasing just

before spermiation (Weil et al. 1995; Breton et al. 1998;

Gomez et al. 1999). At spermiation in male rainbow

trout, both FSH and LH levels increase in the pituitary

gland, whereas LH increases only in plasma. However,
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plasma FSH levels are highly increased in late sperma-

togenesis and before spermiation (Gomez et al. 1999).

In male striped bass, FSH-b was highly expressed

during early spermatogenesis and LH-b during late

spermatogenesis (Hassin et al. 1998). In Atlantic

halibut Hippoglossus hippoglossus, FSH-b, LH-b, and

common a mRNAs are highly expressed in the mature

male pituitary, whereas the expression of LH-b and

common a mRNAs is low in the juvenile male

pituitary. No FSH-b mRNA has been detected in the

juvenile male pituitary (Weltzien et al. 2003). In greasy

grouper E. coioides, expression of the GtH subunits

increased in the pituitary during the early develop-

mental stage of the ovary, whereas expression of the

two types of GtH is decreased in developing oocytes

(Li et al. 2005). However, those studies were done on

very recently mature fish. Further studies on the role of

GtHs during sex change are needed.

In conclusion, our results show that sex change has

two stages in the juvenile longtooth grouper. In the first

stage, the stimulation of 11-KT causes oocyte degen-

eration. In the second stage, increased 11-KT and FSH-

b mRNA levels stimulate spermatogenesis. However,

further studies on the mechanisms of the sex steroid

hormone function and activation of GtHs in juveniles

are needed.
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