DOI QR코드

DOI QR Code

콩 종자에서 쿠니츠트립신인히비터와 P34 단백질의 유전

Inheritance of Kunitz Trypsin Inhibitor and P34 Protein in Soybean Seed

  • 한은희 (경상대학교 농학과, 생명과학연구원) ;
  • 성미경 (경상대학교 농학과, 생명과학연구원) ;
  • 백운장 (경상대학교 농학과, 생명과학연구원) ;
  • 심상인 (경상대학교 농학과, 생명과학연구원) ;
  • 김민철 (경상대학교 농학과, 생명과학연구원) ;
  • 정종일 (경상대학교 농학과, 생명과학연구원)
  • Han, Eun-Hui (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Sung, Mi-Kyung (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Baek, Woon-Jang (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Shim, Sang-In (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Kim, Min-Chul (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Chung, Jong-Il (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University)
  • 투고 : 2012.02.16
  • 심사 : 2012.03.09
  • 발행 : 2012.03.30

초록

인체내에서 소화불량 및 알레르기 반응을 일으킴으로써 콩의 품질을 저하시키는 물질인 Kunitz trypsin inhibitor(KTI) 단백질이 결핍되고, P34 단백질을 적게 함유하는 콩 계통을 선발하기 위해서, 현재까지 보고되지 않은 KTI 단백질의 유무와 P34 단백질 함량간의 유전관계에 대한 정보를 얻기 위하여 본 연구에서 얻어진 결과는 다음과 같다. 1. 07B1과 PI567476의 교배를 통해 얻어진 479개의 $F_2$ 종자를 대상으로 SDS-PAGE를 이용한 KTI 단백질의 유무를 확인한 결과, KTI 단백질이 존재하는 종자의 수는 353개, 결핍된 종자는 126개로 3 : 1로 분리하였다. 2 Western blot을 이용한 P34 단백질의 함량을 확인 한 결과, P34 단백질 함량이 보통 또는 높은 종자가 363개, 함량이 낮은 종자는 116개로 P34 단백질 함량에 대한 유전분리비는 3 : 1로 나타났다. 3. 전체 $F_2$ 종자 479개 중에서 KTI 단백질이 존재하며, P34 단백질 함량이 보통 또는 높은 종자가 266개, KTI 단백질이 존재하고 P34 단백질 함량이 낮은 종자가 88개, KTI 단백질이 결핍이고 P34 단백질함량이 보통 또는 높은 종자가 102개, KTI 단백질이 결핍이며 P34 단백질 함량이 적은 종자가 23개로 9:3:3:1의 분리비에 적합하여 KTI 단백질 유무와 P34 단백질 함량간에는 독립유전을 하였다.

Soybean [$Glycine$ $max$ (L.) Merr.] protein is a high quality source for food and feed. But, antinutritional factors in the raw mature soybean are exist. Kunitz trypsin inhibitor (KTI) protein is a main antinutritional factor in soybean seed. Also, P34 protein, referred as $Gly$ $m$ Bd 30K, has been identified as a predominant immunodominant allergen. Genetic relationship between KTI protein and P34 protein could be useful in soybean breeding program for the genetic elimination or reduction of these factors. The objective of this study was to determine the independent inheritance or linkage between KTI protein and P34 protein in soybean seed. A total of 479 $F_2$ seeds were obtained from the cross of 07B1 and PI567476 parents. KTI protein and relative amount of P34 protein were analysed from $F_2$ seeds harvested from the F1 plants by using SDS-PAGE and Western blot analysis. The segregation ratios of 3 : 1 for KTI protein (353 KTI protein present : 126 KTI protein absent) and relative amount of P34 protein (363 normal amount of P34 protein : 116 low amount of P34 protein). The segregation ratio of 3 : 1 suggested that KTI protein and relative amount of P34 protein in mature soybean seed were controlled by a single major gene. The segregation ratios of 9 : 3 : 3 : 1 (266 KTI protein present, normal amount of P34 protein: 88 KTI protein present, low amount of P34 protein: 102 KTI protein absent, normal amount of P34 protein: 23 KTI protein absent, low amount of P34 protein) and Chi-square value (${\chi}^2$=3.31, P=0.346) were observed in $F_2$ seeds. This data showed that KTI protein was inherited independently with relative amount of P34 protein in soybean. These results will be helpful in breeding program for selecting the line with lacking KTI protein and reduced amount of P34 protein in soybean.

키워드

참고문헌

  1. Helm, R. M., Cockrell, G., Connaughton, C., West, C. M., Herman, E., Sampson, H. A., Bannon, G. A., and Burks, A. W. 2000. Mutantional analysis of the IgE-binding epitopes of P34/Gly m Bd 30K. J. Allergy Clin Immuno. 105 : 378-384. https://doi.org/10.1016/S0091-6749(00)90091-5
  2. Herman, E. M., Helm, R. M., Jung, R., and Kinney, A. L. 2003. Genetic modification removes an immunodominant allergen from soybean. Plant Physiology 132 : 36-43. https://doi.org/10.1104/pp.103.021865
  3. Hymowitz T. 1973. Electrophoretic analysis of SBTI-A2 in the USDA soybean germplasm collection. Crop Sci 13 : 420-421. https://doi.org/10.2135/cropsci1973.0011183X001300040008x
  4. Ji C, Boyd C, Slaymaker D, Okinaka Y, Takeuchi Y, and Midland, S. L. 1988. Characterization of a 34-kDa soybean binding protein for the syringolide elicitors. Proc Natl Acad Sci USA. 95 : 3306-3311.
  5. Kalinski, A., Melroy, D. L., Dwivedi, R. S., and Herman, E. M. 1992. A soybean vacuolar protein (P34) related to thiol proteases is synthesized as a glycoprotein precursor during seed maturation. J.Bio. Chem. 267 : 12068-12076.
  6. Kim, M. S., M. J. Park, W. H. Jeong, K. C. Nam and J. I. Chung. 2006. SSR marker tightly linked to the Ti locus in soybean. Euphytica 152 : 361-366. https://doi.org/10.1007/s10681-006-9223-3
  7. Kunitz, M. 1945. Crystallization of a soybean trypsin inhibitor from soybean. Science 101 : 668-669. https://doi.org/10.1126/science.101.2635.668
  8. Ogawa, T., Tsuji, H., Kitamura, K., Zhu, Y. L., Hirano, H., and Nishikawa, K. 1993. Identification of the soybean allergenic protein, Gly m Bd 30K, with the soybean 34-kDa oil-body- associated protein. Biosci. Biotechnol. Biochem. 57 : 1030-1033. https://doi.org/10.1271/bbb.57.1030
  9. Orf, J. H., and Hymowitz, T. 1979. Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 19 : 107-109. https://doi.org/10.2135/cropsci1979.0011183X001900010026x
  10. Singh, L. C., Wilson, M., and Hadley, H. H. 1969. Genetic differences in soybean trypsin inhibitor separated by disc electrophoresis. Crop Sci 9 : 489-491. https://doi.org/10.2135/cropsci1969.0011183X000900040031x
  11. Sun, P., Li, D. F., Li, Z. J., Dong, B., and Wang, F. L. 2008. Effects of glycinin on IgE mediated increase of mast cell numbers and histamine release in the small intestine. Journal of Nutritional Biochemistry, 19, 627-633. https://doi.org/10.1016/j.jnutbio.2007.08.007
  12. Sung, M. K., J. S. Seo, K. R. Kim, E. H. Han, J. W. Nam, D. S. Kang, W. S. Jung, M. C. Kim, S. I. Shim, K. M. Kim and J. I. Chung. 2011. Inheritance of P34 allergen protein in mature soybean seed. Kor. J. Breed. Sci. 43(2) : 115-119.
  13. Wang, K. J., Kaizuma, N., Takahata, Y., and Hatakeyama, S. 1996 Detection of two new variants of soybean Kunitz trypsin inhibitor through electrophoresis. Breed Sci 46 : 39-44.
  14. Wang, K. J., Takahata, Y., Ito, K., Zhao, Y. P., Tsutsumi, K. I., and Kaizuma, N. 2001. Genetic characterization of a novel soybean Kunitz trypsin inhibitor. Breed Sci 51 : 185-190. https://doi.org/10.1270/jsbbs.51.185
  15. Wang, K. J., Yamashita, T., Watanabe, M., and Takahata, Y. 2004. Genetic characterization of a novel $Ti^b$-derived variant of soybean Kunitz trypsin inhibitor detected in wild soybean (Glycine soja). Genome 47 : 9-14. https://doi.org/10.1139/g03-087
  16. Wang, K. J., and Li, X. H. 2005. Tif type of soybean Kunitz trypsin inhibitor exists in wild soybean of northern China. In: Proceedings of the 8th national soybean research conference of China, pp. 167-168.
  17. Wang, K. J., Takahata, Y., Kono, Y., and Kaizuma, N. 2008. Allelic differentiation of Kunitz trypsin inhibitor in wild soybean (Glycine soja). Theor Appl Genet. 117 : 565-573. https://doi.org/10.1007/s00122-008-0800-9
  18. Xiang, Baird, L. M., Jung, R., Zeece, M. G., Markwell, j., and Sarath, G. 2008. P34, a novel soybean protein allergen, belong to a plant-specific protein family and is present in protein storage vacuoles. J Agric. Food. Chem. 56 : 2266-2272. https://doi.org/10.1021/jf073292x
  19. Zhao, S. W., and Wang, H. 1992. A new electrophoretic variant of SBTi-A2 in soybean seed protein. Soyb Genet Newsl. 19 : 22-24.