DOI QR코드

DOI QR Code

Environmental Impacts of Korean and CIMMYT Wheat Lines on Protein Characteristics and Bread Making Quality

  • Park, Chul-Soo (Department of Crop Science and Biotechnology, Chonbuk National University) ;
  • Kim, Hong-Sik (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Dae-Ho (Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Hyun, Jong-Nae (National Institute of Crop Science, Rural Development Administration) ;
  • Kang, Chon-Sik (Department of Crop Science and Biotechnology, Chonbuk National University)
  • 투고 : 2012.01.25
  • 심사 : 2012.03.13
  • 발행 : 2012.03.30

초록

This study was conducted to compare the protein characteristics, dough rheology and bread loaf volume of Korean wheat cultivars and CIMMYT lines produced in diverse environments and to determine the genetic and environmental effects on bread making quality. Protein characteristics, including protein content and SDS-sedimentation volume, mixing properties during dough development and bread loaf volume were primarily influenced by the environment. Wheat cultivated in Jinju exhibited higher SDS-sedimentation volume based on constant protein weight and bread loaf volume than those in Suwon and Iksan. SDS-sedimentation volume based on constant protein weight, mixing time of mixograph and mixing tolerance of mixograph were positively correlated with bread volume. Korean wheat cultivars showed different allelic variations of $Glu-1$ and $Glu-3$ compared to CIMMYT wheat lines. Alchanmil, Keumkangmil and Tapdongmil could be suitable for bread making because these cultivars exhibited a 10 point $Glu-1$ score. However, Korean wheat cultivars should be introduced specific alleles in $Glu-3$ loci, including $Glu-A3b$ or $d$ and $Glu-B3b$, $d$, $f$ or $g$, to improve gluten strength related to increase bread loaf volume.

키워드

참고문헌

  1. American Association of Cereal Chemists. 2000. Approved Methods of the AACC. 10th ed. Methods 08-01, 44-15A and 46-30. The Association: St. Paul, MN.
  2. Appelbee, M. J., G. T. Mekuri, V. Nagasandra, J. P. Bonneau, and H. A. Eagles. 2009. Novel allelic variants encoded at the Glu-D3 locus in bread wheat. J. Cereal Sci. 49 : 254-261. https://doi.org/10.1016/j.jcs.2008.10.011
  3. Baenziger, P. S., R. L. Clements, M. S. McIntosh, W. T. Yamazaki, T. M. Starling, D. J. Sammons, and J. W. Johnson. 1985. Effect of cultivar, environment and their interaction and stability analyses on milling and baking quality of soft red winter wheat. Crop Sci. 25 : 5-8. https://doi.org/10.2135/cropsci1985.0011183X002500010002x
  4. Baik, B-K., Z. Czuchajowska, Y. Pomeranz. 1994. Role and contribution of starch and protein contents and quality to texture profile analysis of oriental noodles. Cereal Chem. 71 : 315-320.
  5. Baker, A. E., C. E. Walker, and K. Kemp. 1988. An optimum compression depth for measuring bread crumb firmness. Cereal Chem. 65 : 302-307.
  6. Bassett, L. M., R. E. Allan, and G. L. Rubenthaler. 1989. Genotype ${\times}$ environment interactions on soft white winter wheat quality. Agron. J. 81 : 955-960. https://doi.org/10.2134/agronj1989.00021962008100060022x
  7. Blumenthal, C., C. W. Wrigley, I. L. Batey, and E. W. R. Barslow. 1994. The heat-shock response relevant to molecular and structural changes in wheat yield and quality. Aust. J. Plant Physiol. 21 : 901-909. https://doi.org/10.1071/PP9940901
  8. Blumenthal, C., F. Bekes, P. W. Gras, E. W. R. Barslow, and C. W. Wrigley. 1995. Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem. 72 : 539-544.
  9. Blumenthal, C., I. L. Batey, C. W. Wrigley and E. W. R. Barslow. 1990a. Involvement of a novel peptide in the heat shock response of Australian wheats. Aust. J. Plant Phyiol. 17 : 441-449. https://doi.org/10.1071/PP9900441
  10. Blumenthal, C., I. L. Batey, C. W. Wrigley and E. W. R. Barslow. 1990b. Gliadin genes contain heat-shock elements: Possible relevance to heat-induced changes in grain quality. J. Cereal Sci. 11 : 185-187. https://doi.org/10.1016/S0733-5210(09)80162-8
  11. Branlard G., M. Dardevet, R. Saccomano, F. Lagoutte, and J. Gourdon 2001. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica. 119 : 59-67. https://doi.org/10.1023/A:1017586220359
  12. Bruckner P. L., D. Habernicht, G. R. Carlson, D. M. Wichman, and L. E. Talbert. 2001. Comparative bread quality of white flour and whole grain flour for hard red spring and winter wheat. Crop Sci. 41 : 1917-1920. https://doi.org/10.2135/cropsci2001.1917
  13. Busch, R. H., W. C. Shuey, and R. C. Frohberg. 1969. Response of hard red spring wheat (Triticum aestivum L.) to environments in relation to six quality characteristics. Crop Sci. 9 : 813-817. https://doi.org/10.2135/cropsci1969.0011183X000900060044x
  14. Campbell K. G., P. L. Finney, C. J. Bergman, D. G. Gualberto, J. A. Anderson, M. J. Giroux, D. Siritunga, J. Zhu, F. Gendre, C. Roue, A. Verel, and M. E. Sorrells. 2001. Quantitative trait loci associated with milling and baking quality in a soft ${\times}hard$ wheat cross. Crop Sci. 41 : 1275-1285. https://doi.org/10.2135/cropsci2001.4141275x
  15. Chang, H. G., C. S. Kim, D. M. Hah, and H. S. Shin. Effect of genetic-environmental interaction on quality of wheat. Korean. J. Food Sci. Technol. 18 : 31-37.
  16. Ciaffi, M., B. Margiotta, G. Colaprico, E. De Stafanis, D. Sgrulletta, and D. Lafiandra. 1995. Effect of high temperatures during grain filling on the amount of insoluble proteins in durum wheat. J. Genet. Breed. 49 : 285-296.
  17. Dupont, F. M., and S. B. Altenbach. 2003. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J. Cereal Sci. 38 : 133-146. https://doi.org/10.1016/S0733-5210(03)00030-4
  18. Finney, K. F. 1984. An optimized, straight-dough, bread-making method after 44 years. Cereal Chem. 25 : 20-27.
  19. Finney, K. F., W. T. Yamazaki, V. L. Moore, and G. L. Rubenthaler. 1987. Quality of hard, soft, and durum wheats. pp. 677-748: in E. G. Heyne ed. Wheat and wheat improvement. ASA, Inc., CSSA, Inc., SSSA, Inc.: Madison, WI.
  20. Gaines, C. 1990. Influence of chemical and physical modification on soft wheat protein on sugar-snap cookie dough consistency, cookie size, and hardness. Cereal Chem. 67 : 73-77.
  21. Graybosch, R. A., C. J. Peterson, D. R. Shelton, and P. S. Baenziger. 1996. Genotypic and environmental modification of wheat flour protein composition in relation to end-use quality. Crop Sci. 36 : 296-300. https://doi.org/10.2135/cropsci1996.0011183X003600020014x
  22. Graybosch, R. A., C. J. Peterson, K. J. Moore, M. M. Stearn, and D. L. Grant. 1993. Comparative effects of wheat flour protein, lipid, and pentosan composition in relation to baking and milling quality. Cereal Chem. 70 : 95-101.
  23. Graybosch, R. A., C. J. Peterson, P. S. Baenziger, and D. R. Shelton. 1995. Environmental modification of hard red winter wheat flour protein composition. J. Cereal Sci. 22 : 45-51. https://doi.org/10.1016/S0733-5210(05)80006-2
  24. Gupta, R. B. and K. W. Shepherd. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW-GS subunits of glutelin. 1. Variation and genetic control of the subunits in hexaploid wheats. Theor. Appl. Genet. 80 : 65-74.
  25. Gupta, R. B., F. Bekes, and C. W. Wrigley. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats. Cereal Chem. 68 : 328-333.
  26. Gupta, R. B., I. L. Batey, and F. MacRitchie. 1992. Relationship between protein composition and functional properties of wheat flours. Cereal Chem. 69 : 125-131.
  27. Gupta, R. B., K. Khan, and F. MacRitchie. 1993. Biochemical basis of flour properties in bread wheats. I. Effects of variation in quantity and size distribution of polymeric protein. J. Cereal Sci. 17 : 23-41.
  28. Gupta, R. B., N. K. Singh, and K.W. Shepherd, 1989. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor. Appl.Genet. 77 : 57-62. https://doi.org/10.1007/BF00292316
  29. Ha, Y. W., H. S. Song, C. K. Lee, and C. H. Cho. 1990. Protein of major germplasms for high-protein wheat breeding. Korean J. Crop Sci. 35 : 393-402.
  30. Huebner, F. R., T. C. Nelsen, O. K. Chung, and J. A. Bietz. 1997. Protein distributions among hard red winter wheat varieties as related to environment and baking quality. Cereal Chem. 74 : 123-128. https://doi.org/10.1094/CCHEM.1997.74.2.123
  31. Johnson, J. A., M. N. A. Khan, and C. R. S. Sanchez. 1972. Wheat cultivars, environment and breadmaking quality. Cereal Sci. Today 17 : 323-326.
  32. Lafiandra, D., S. Masci, C. S. Blumenthal, and C. W. Wrigley. 1999. The formation of glutenin polymer in practice. Cereal Foods World 44 : 572-578.
  33. Lukow, O. M. and P. B. E. McVetty. 1991. Effect of cultivar and environment on quality characteristics of spring wheat. Cereal Chem. 68 : 597-601.
  34. Luo C., G. B. Griffen, G. Branlard, and D. L. McNeil. 2001. Comparison of low- and high molecular weight wheat glutenin allele effects on flour quality. Theor. Appl. Genet. 102 : 1088-1098. https://doi.org/10.1007/s001220000433
  35. McGuire, C. F. and F. H. McNeal. 1974. Quality response of 10 hard red spring wheat cultivars to 25 environments. Crop Sci. 14 : 175-180.
  36. Metakovsky, E. V., C. W. Wrigley, F. Bekes, and R. B. Gupta. 1990. Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Aust. J. Agric. Research 41 : 289-306. https://doi.org/10.1071/AR9900289
  37. Miezan, K., E. G. Heyne, and K. F. Finney. 1977. Genetic and environmental effects on the grain protein content in wheat. Crop Sci. 14 : 175-180.
  38. Mikhaylenko, G. G., Z. Czuchajowska, B.-K. Baik, and K. K. Kidwell. 2000. Environmental influences on flour composition, dough rheology, and baking quality of spring wheat. Cereal Chem. 77 : 507-511. https://doi.org/10.1094/CCHEM.2000.77.4.507
  39. Mosleth, E., and A. K. Uhlen. 1991. Association between the composition of gliadins and HMW glutenin subunits and the gluten quality in wheat (T. aestivum L.). pp. 112-128 in: Gluten Proteins 1990. W. Bushuk and R. Tkachuk, eds. Am. Assoc. Cereal Chem.: St. Paul, MN.
  40. Park, C. S., Y. K. Kim, O. K. Han, M. J. Lee, J. C. Park, J. H. Seo, J. J. Hwang, J. G. Kim, T. W. Kim. 2005. Characteristics of biochemical markers and whole-wheat flours using small-scaled sampling methods in Korean wheats. Korean J. Crop Sci. 50 : 346-355.
  41. Payne, P. I. and G. J. Lawrence. 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Research Comm. 11 : 29-35.
  42. Payne, P. I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Ann. Review Plant Physiol. 38 : 141-153. https://doi.org/10.1146/annurev.pp.38.060187.001041
  43. Pena, R. J., H. Gonzalez-Santoyo, and F. Cervantes. 2004. Relationship between Glu-D1/Glu-B3 allelic combinations and bread-making quality-related parameters commonly used in wheat breeding. In: . Lafiandra, D., S. Masci, and R. D'Ovidio. (eds). The Gluten Proteins. Royal Society of Chemistry Royal Society of Chemistry, UK. pp. 156-159.
  44. Peterson, C. J., R. A. Graybosch, D. R. Shelton, and P. S. Baenzinger. 1998. Baking quality of hard winter wheat: Response of cultivars to environment in the Great Plains. Euphytica. 100 : 157-162. https://doi.org/10.1023/A:1018361502435
  45. Peterson, C. J., R. A. Graybosch, P. S. Baenzinger, and A. W. Grombacher. 1992. Genotype and environment effects on quality characteristics of hard red winter wheat. Crop Sci. 32 : 98-103. https://doi.org/10.2135/cropsci1992.0011183X003200010022x
  46. Pomeranz, Y. 1988. Composition and functionality of wheat flour components. pp. 219-370 in : Wheat Chemistry and Technology. Vol. II. Y. Pomeranz, ed. Am. Assoc. Cereal Chem.: St. Paul, MN.
  47. Rao, A. C. S., J. L. Smith, V. K. Jandhyala, R. I. Papendick and J. F. Parr. 1993. Cultivar and climatic effects on the protein content of soft white winter wheat. Agron. J. 85 : 1023-1028. https://doi.org/10.2134/agronj1993.00021962008500050013x
  48. Ryu, I. S., H. K.Shin, C. H. Cho, and S. H. Bae. 1977. Influences of environmental factors on wheat quality. Korean J. Crop Sci. 22 : 59-64.
  49. Shewry P. I., N. G. Halford, and A. S. Tatham. 1992. High molecular weight subunits of wheat glutenin. J. Cereal. Sci. 15 : 105-120. https://doi.org/10.1016/S0733-5210(09)80062-3
  50. Singh, N. K., R. Donovan, and F. MacRitchie. 1990. Use of sonication and size exclusion high performance liquid chromatography in the study of wheat flour proteins. I. Dissolution of total proteins in the absence of reducing agents. Cereal Chem. 67 : 150-161.
  51. Song, H. S., and H. S. Lee. 1993. Selection efficiency for protein content and sedimentation value in progenies of hybridized wheat. Korean J. Crop Sci. 38 : 8-14.
  52. Tribol, E., A. Abad, A. Michelena, J. Lloveras, J. L. Ollier, and C. Daniel. 2000. Environmental effects on the quality of two wheat genotypes. 1. quantitative and qualitative variation of storage proteins. Euro. J. Agro. 13 : 47-64. https://doi.org/10.1016/S1161-0301(00)00059-9
  53. van Beem, J., V. Mohler, R. Lukman, M. van Ginkel, M. William, J. Crossa, and A. J. Worland. 2005. Analysis of genetic factors influencing the developmental rate of globally important CIMMYT wheat cultivars. Crop Sci. 45 : 2113-2119. https://doi.org/10.2135/cropsci2004.0665
  54. Vawser, M., G. B. Cornish, and K. W. Shepherd. 2002. Rheological dough properties of Aroona isolines differing on glutenin subunit composition. pp. 53-58 in : Cereals 2002: 52nd Aust. Cereal Chem. Conf. C. K. Black, J. F. Panozzo, C. W. Wrigley, I. L. Batey, and N. Larsen, eds. Royal Australian Chemical Institute, Melbourne. Australia.
  55. Wang, L. H., X. L. Zhao, Z. H. He. W. Ma, R. Appels, R. J. Pena, and X. C. Xia. 2009. Characterization of low-molecular-weight glutenin subuint Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 118 : 525-539. https://doi.org/10.1007/s00122-008-0918-9
  56. Weegels, P. L., A. M. van de Pijpekamp, A. Graveland, R. J. Hamer, and J. D. Schofield. 1996. Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. Relationship between glutenin macropolymer content and quality parameters. J. Cereal Sci. 23 : 103-111. https://doi.org/10.1006/jcrs.1996.0010
  57. Weegels, P. L., R. J. Hamer, and J. D. Schofield. 1996. Critical review: functional properties of wheat glutenin. J. Cereal Sci. 23 : 1-18. https://doi.org/10.1006/jcrs.1996.0001
  58. Zhang, W., M. C. Giannibelli, L. R. Rampling, and K. R. Gale. 2004. Characterization and marker develpoment for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L). Theor. Appl. Genet. 108 : 1409-1419. https://doi.org/10.1007/s00122-003-1558-8
  59. Zhu, J., and K. Khan. 2001. Effects of genotype and environment on glutenin polymers and breadmaking quality. Cereal Chem. 78 : 125-130. https://doi.org/10.1094/CCHEM.2001.78.2.125

피인용 문헌

  1. Current Regional Cultural Situation and Evaluation of Grain Characteristics of Korean Wheat II. Grain Characteristics Collected in Domestic Wheat Cultivar Grown in Korea vol.58, pp.3, 2013, https://doi.org/10.7740/kjcs.2013.58.3.239
  2. Characterization of a wheat mutant missing low-molecular-weight glutenin subunits encoded by the B-genome vol.73, 2017, https://doi.org/10.1016/j.jcs.2016.12.004
  3. 호남지역 논 재배에 적합한 곡실 사료용 밀 품종 선발 및 사료가치 평가 vol.21, pp.3, 2012, https://doi.org/10.5762/kais.2020.21.3.156
  4. Identification and Validation of Stable Quantitative Trait Loci for SDS-Sedimentation Volume in Common Wheat (Triticum aestivum L.) vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.747775