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INTRODUCTION

Fascioliasis is an important human disease caused by Fascio-
la hepatica and Fasciola gigantica. They parasitize the liver of do­
mestic, wild animals, and humans [1]. In Egypt, the emerging 
situation of both human and livestock fascioliasis has increas­
ed significantly due to both F. gigantica and F. hepatica [2-4]. 
Worldwide, more than 90 million people are at risk of fascioli­
asis and between 2.4 and 17 million individuals are infected 
with Fasciola [5]. 

A significant data suggests that a number of molecules, in­
cluding cathepsins L, glutathione S-transferase (GST), leucine 
aminopeptidase (LAP), and fatty acid binding proteins (FABP) 
have the potency of inducing a protective response against Fas-
ciola in laboratory animals and large animal models [6,7]. The 
enzymes belonging to the cysteine proteinase (CP) family have 

been studied most intensely and have given the most promis­
ing results when used as vaccine antigens [6]. These enzymes 
are involved in feeding, migration, and immune evasion by 
Fasciola [8-11].

Chronicity and the T-helper 2 (Th2) immune responses are 
features of helminth infections in humans. The liver fluke pro­
motes its own survival through several strategies to down-reg­
ulate the immune response of the host during the early phase 
of infection. The liver fluke secretes molecules, known as ex­
cretory-secretory (ES) products that modulate or suppress host 
immune responses [12,13]. During early chronic infections, 
there is a predominance of a Th2 response, which decreases in 
advanced chronic infections characterized by a persistent im­
mune suppression [14]. 

CD4+ T cells can be separated into 2 major subsets, Th1 and 
Th2, on the basis of their cytokine secretion patterns and func­
tion. Th1 cells produce many cytokines, including IFN-γ and 
TNF-α, and promote the activation of macrophages which lead 
to the production of opsonizing antibodies. Also, Th1 cells pro­
mote mediation of a delayed-type hypersensitivity reaction and 
inflammatory responses. Th2 cells produce many other cyto­
kines, including IL-4, IL-6, and IL-10, and promote immediate-
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type hypersensitivity reactions, involving IgE, eosinophils, and 
mast cells [13]. Generally, helminth infections are manifested 
by suppression of Th1 function and induction of T cells, which 
express cytokines characteristic of the Th2 subset [15]. 

Vaccination studies with purified native or recombinant Fas-
ciola antigens suggest that this approach, which diminished 
morbidity and mortality and reduced transmission, is a realis­
tic goal [16]. However, despite long-standing research, a vac­
cine against this parasite has not yet been developed to the point 
of commercialization [17]. This can be largely attributed to a 
fact that immune responses to vaccines are influenced by the 
route of immunization (injection or oral), form of antigen, and 
presence of adjuvant in the vaccine [18,19].

The present study was designed to study the effects of CP as 
a protective vaccine on the humoral and cellular immune re­
sponses in F. gigantica-infected sheep as an attempt to use CP 
as a vaccine against Fasciola infection.

MATERIALS AND METHODS

Animals
Thirty-two young sheep, 6-month-old, were used in this 

study. They were proved to be free from any parasitic infec­
tions by examining them by both parasitological and ELISA 
tests [20]. All procedures related to animal experimentation 
met the International Guiding Principles for Biomedical Re­
search Involving Animals as issued by the International Orga­
nizations of Medical Sciences.

Parasites and infection
Metacercariae of F. gigantica were purchased from the Schis­

tosome Biology Supply Center (SBSC) of Theodor Bilharz Re­
search Institute (TBRI), Giza, Egypt. Sheep were infected with 
300 F. gigantica metacercariae, via oral route using a dosing gun 
placed inside gelatin capsules (Torpa Inc., Fairfield, New Jersey, 
USA) [21].

Preparation of ES products
Adult F. gigantica worms were collected from the biliary tracts 

and gallbladders of condemned bovine livers from a local slau­
ghter-house. The live intact worms were washed 6 times with 
cold 0.01 M PBS (pH 7.4) containing 125 mM NaCl for 1 hr 
to eliminate any traces of bile, blood, and contaminated mi­
croorganisms [21]. They were then incubated for 16 hr at 37˚C 
in RPMI 1640 medium (pH 7.4). Following incubation, the 

medium was removed and was centrifuged at 15,000 g for 30 
min. The supernatant containing ESPs was collected, and the 
protein content was measured (Bio-Rad, Richmond, Califor­
nia, USA). It was then stored at -20˚C [22].

Purification of F. gigantica cysteine proteinase (CP)
ESPs were concentrated using an Amicon 8400 ultrafiltra­

tion unit with membrane (3 kDa cut-off). The sample was ap­
plied to DEAE-sephadex A50 column (ion exchange column 
chromatography) followed by a Sephacryl S-200 HR column 
(gel filtration chromatography) equilibrated in 0.1 M Tris-HCl, 
pH 7 [23].

Experimental design 
Sheep were divided into 3 groups (8 sheep/group). The first 

group was a normal control group. The second group was the 
infected control group; sheep were infected with F. gigantica 
metacercariae as mentioned before. The third group was the 
immunized-infected group, where the sheep were immunized 
intramuscularly 4 times at 2 week interval, with 2 mg of puri­
fied CP diluted in 250 μl PBS and 250 μl of complete Freund 
adjuvant (CFA) in the priming dose and 1 mg of CP diluted in 
250 μl PBS and 250 μl of incomplete Freund adjuvant (IFA) in 
the subsequent booster doses. Two weeks after the last booster 
dose of immunization, sheep were infected with F. gigantica 
metacercariae as mentioned previously. Twelve weeks after in­
fection, all the sheep were humanely slaughtered for subse­
quent assessment of both parasitological and immunological 
parameters. Whole blood was collected from each sheep and 
centrifuged at 2,000 rpm at 4˚C for 10 min, and the obtained 
serum samples were stored at -80˚C until analysis. 

Fluke counts
Worms were recovered from the gall bladder and livers from 

the sheep. The gall bladder was removed, the major bile duct 
was opened with blunt-blunt scissors and any visible flukes 
were removed with blunt forceps. Liver of each sheep was turn­
ed upside down in a tray and soaked with hot tap water for 1 
hr. Finally, the liver was cut into 1-2 cm slices and placed in a 
13 liter bucket filled with hot tap water. After allowing stand­
ing and stirring, the supernatant was poured through 200 mm 
sieves to retrieve the flukes. This procedure was repeated twice. 
Flukes from all 3 washes were collected and counted using a 
back-lighted magnifier. The maturity of the flukes (juvenile vs 
adult) was determined based on their size, length, and devel­
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opment of the vitelline glands. The mean total number of flu­
kes/group was calculated [24].

Bile egg count
The collected bile was cleared by repeated sedimentation of 

the eggs. Egg counts were performed under a light microscope 
by measuring a definite volume (10 µl×5) of each sample to 
calculate the total eggs in the given volume of bile as in the 
standard protocol [25].

Fecal egg count (FEC)
Feces were removed from the rectum of each sheep after slau­

ghter. Four grams of dried feces were diluted in 200 ml of wa­
ter and resuspended by vortexing. The feces were then filtered 
through sieves of different pore sizes (300, 150, and 32 mm), 
and the filtrate was allowed to stand for 30 min after which 
the sediment was collected in a test tube and centrifuged at 
700 g for 3 min. After centrifugation, the supernatant was re­
moved, and the sediment was left to stand at room tempera­
ture for 3 min and resuspended in 250 ml polyethylene coni­
cal flask (Falcon, USA). The number of F. gigantica eggs was ex­
amined microscopically under a 100×  magnification [26].

Assessment of anti-Fasciola total IgG, IgG1 and IgG2 by 
ELISA

Anti-Fasciola total IgG, IgG1, and IgG2 subclasses were mea­
sured using the Fasciola antigen (CP) by indirect ELISA, based 
on the method of Engvall and Perlman [27]. The wells of the 
ELISA microtitre plate (Costar, Cambridge, Massachusetts, USA) 
were coated with suspension of 5 µg of Fasciola antigen (CP) 
(100 µl/well) in binding buffer (0.05 M carbonate buffer, pH 
9.6). The sera were diluted 1:200, 1:250, and 1:100 with PBS/
T for measurement of total IgG, IgG1 and IgG2 respectively. An­
ti-goat IgG peroxidase-labeled conjugate, gamma chain-specif­
ic (Sigma, St. Louis, Illinois, USA), specific conjugate anti-goat 
IgG1 and anti-goat IgG2 labeled horseradish peroxidase (HRP) 
(Sigma) were used at a dilution of 1:1,000, 1:250, and 1:400, 
respectively. Then, the plates were incubated for 30 min in a 
water bath at 37˚C, washed 5 times with PBS/T and incubated 
with 100 µl/well of ortho-phenylenediamine (OPD) (Sigma) 
substrate for 15 min. The reaction was stopped with 50 µl/well 
of 8N H2SO4, and absorbance was measured as optical density 
values (OD) at 492 nm using a microplate ELISA reader (Bio-
Rad). 

Assessment of pro-inflammatory and anti-inflammatory 
cytokines by sandwich ELISA

Serum levels of IL-12, IFN-γ, TNF-α, IL-10, TGF-β, and IL-6 
were measured with an ELISA kit (Quantikine M, R, & D sys­
tems, Minneapolis, Minnesota, USA). The detection limit of 
the assay was consistently 20 pg/ml. The concentration was 
calculated from the standard curve that was performed in the 
same assay.

Statistical analysis
Data are expressed as mean±SD. Comparison between the 

mean values of different parameters in the studied groups was 
performed using 1-way ANOVA test, with post-hoc using LSD 
test. The percent reduction in the worm burden was calculated 
from the equation: (mean number of worms in infected con­
trol group - mean number of worms in immunized-infected 
group)/(mean number of worms in infected control group)×  
100. The data were considered significant if P-value was≤0.05. 

RESULTS

Purification of parasitic antigen
F. gigantica CP was purified from ES products by a combina­

tion of gel filtration and ion-exchange chromatography. Analy­
sis by SDS-PAGE (under reducing conditions) revealed that 
the purified preparations contained single proteins of 27 kDa 
(Fig. 1).

Fluke weight and number
The mean total number of worms in the challenge group 

(77.3±18.2) was significantly reduced than their correspond­
ing F. gigantica infected control group sheep (179.2±21.2) (P<  
0.01) with a percent reduction of 56.9%. 

Bile and fecal egg counts 
The mean egg count collected from both bile and feces was 

significantly reduced in the challenge group (P<0.05) when 
compared with the F. gigantica infected control group, yielding 
a percent reduction in the bile and fecal egg count of 70.1% 
and 75.2%, respectively (Table 1). 

Serum anti-Fasciola total IgG, IgG1, and IgG2

The level of total IgG, IgG1, and IgG2 was significantly incre­
ased in immunized-infected group when compared with their 
corresponding F. gigantica-infected control group (P<0.05). 
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Fig. 1. SDS-PAGE of target antigens eluted from affinity chro-
matography column. Lane 1: Low molecular weight standard. 
Lane 2: ESP. Lane 3: Target antigens eluted from Sphadex A50. 
Lane 4: Target antigens eluted from Sephacryl S-200 HR.

Table 1. Effect of immunization with cysteine proteinase on the 
mean number of adult fluke and egg count

Animal group
No. of adult 

flukes

No. of eggs 

In bile In feces 

Normal control group - - -
Infected control group 179.2±21.2  10,500±213  401.0±133.1
Challenge group 
  (% reduction)

77.3±18.2a 
(56.9)

3,055±145a 
(70.1)

99.3±100.3a 
(75.2)

Data are expressed as the mean±SD.
aP<0.05 vs infected controls.

Table 2. Effect of immunization with cysteine proteinases on the 
humoral response

Animal groups IgG IgG1 IgG2

Normal control group 0.3±0.2 0.3±0.3 0.2±0.2
Infected control group 1.3±0.1 0.5±0.1 0.533±0.2
Immunized-infected group 1.7±0.2a 0.9±2.1a 0.621±0.2a

Data are expressed as the mean±SD.
aP<0.05 vs infected controls.

Table 3. Effect of immunization with cysteine proteinase on the cellular response

Animal group IL-12 (pg/ml) IFN-γ (pg/ml) TNF-α (pg/ml) IL-10 (pg/ml) TGF-β (pg/ml) IL-6 (pg/ml)

Normal control group 32.4±2.1 277.7±4.5 284.4±15.1 82.3±8.8 170±4.9 13.3±2.9
Infected control group 90.6±12.4 1,115±61.6 493.3±42.3 487.2±16.4 297.5±575 114.8±2.2
Immunized-infected group 53.3±12a 997.8±61.5a 343.2±42.9a 644.5±29.4a 405.1±3.2a 198.9±7.3a

aP<0.05 vs infected controls.

The OD values of total IgG, IgG1, and IgG2 in the normal con­
trol group always remained below the cut-off value of the F. gi-

gantica-infected control group (Table 2).

Pro-inflammatory and anti-inflammatory cytokines 
Serum levels of pro-inflammatory cytokines, IL-12, IFN-γ, 

and TNF-α, were significantly decreased (P<0.05), while the 
anti-inflammatory cytokine levels, IL-10, TGF-β, and IL-6, were 
significantly increased (P<0.05) in immunized-infected group 
when compared to their corresponding F. gigantica-infected 
control group (Table 3).

DISCUSSION

Due to the importance of peptidases in host-parasite inter­
actions, they are considered to be promising targets for the de­
velopment of novel chemotherapeutic drugs and vaccines aga­
inst a number of trematodiases, including schistosomiasis, fas­

cioliasis, paragonimiasis, and opisthorchiasis [28]. The use of 
Fasciola worm-derived ES proteins, namely CP, for serodiagno­
sis implies that these molecules elicit strong cellular and hu­
moral immune responses during F. hepatica and F. gigantica na­
tural infection [12,29-31]. 

Hillyer [16] reported that CP comprise a large family that 
include cathepsin L and B that have been studied in relation to 
parasite invasion, feeding, immune evasion, and vaccine po­
tential. The Fasciola cathepsin L protease has been proposed to 
play a number of functional roles, including promoting tissue 
penetration, nutrition acquisition, egg production, and im­
mune evasion by cleavage of Fc portion of immunoglobulins 
[28,32]. 

In our work, gel electrophoresis showed that the purified CP 
was 27 kDa. This result is in agreement with Sobhon [33] who 
reported that gel electrophoresis in 1- dimensional indicated 
that the most prominent F. gigantica ES proteins were 66, 64, 
58, 54, 28, and 26-27 kDa. The former 4 molecules were shown 
to be derived from the worm tegument, while the latter 28 and 
26-27 kDa species appeared to be released from cells lining the 
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gut [16,34]. The 28 and 26-27 kDa molecules were shown to 
essentially consist of cathepsin CP [35,36].

The reduction of egg fecundity observed in this study may 
be due to the effect of the CP antigens, which were found to 
induce reduction in egg fecundity. This result suggested that 
protective immune responses were of the Th1 type, involving 
the IgG2 isotype, IFN-γ-activated macrophages, and cytotoxic T 
cells [16]. Also, Van-Milligien [37] and Harmsen [38] obtained 
an antigen fraction derived from newly existed F. hepatica juve­
niles, containing an immune reactive 32 kDa protein. This an­
tigen has 70% sequence homology with cathepsin L1 and L2 
which induced almost complete protection to challenge infec­
tions with reduction in egg fecundity of over 90% in compari­
son to naïve control rats.

The immunization of sheep with CP injected intramuscu­
larly induced reduction of the number of adult flukes and bile 
and fecal egg counts compared to infected controls. The effects 
of the vaccine on egg production and hatch rate may be medi­
ated by antibodies that inhibit parasite feeding by blocking ca­
thepsin L activity, thereby preventing the acquisition of amino 
acids for the synthesis of egg proteins. Additionally, cathepsin 
Ls have been immunolocalized in the reproductive organs of 
the mature parasite [32,39].

Specific IgG and the 2 subclasses, IgG1 and IgG2, were signif­
icantly higher in immunized infected group compared to the 
infected control group. This result was in agreement with Hoyle 
[40]. They reported that immune antibody responses to a ca­
thepsin L-based vaccine included high titers of both IgG1 and 
IgG2 indicating that protection is associated with induction of 
a Th1 response or mixed Th1/Th2 responses.

Information on the immune status and cytokine profiles of 
animals infected with F. gigantica is scanty, despite the fact that 
F. gigantica is an economically important parasite of livestock. 
A few published studies on cytokine profiles during fascioliasis 
are on F. hepatica infection in cattle and sheep, which have de­
monstrated a dominant Th2-type immune response during 
chronic infections [13,41]. However, some contrasting obser­
vations have been reported indicating a Th0 response during 
early phases of infection wherein IFN-γ, IL-2, and IL-4 were 
produced [42,43]. Non-polarized Th0 response has also been 
reported in cattle during a chronic phase of F. hepatica infec­
tion [12].

In our study, the serum levels of pro-inflammatory cytokines, 
IL-12, IFN-γ, and TNF-α, showed significant decreases. How­
ever, the anti-inflammatory cytokine levels, IL-10, TGF-β, and 

IL-6, showed significant increases. The T-cell response during F. 
gigantica infection was a Th2 biased immune response during 
early phases of infection [13]. It was also reported that the pro­
duction of Th2 cytokine via IL-6 in the serum of infected cattle 
during early phases of infection but absence of IFN-γ during 
this period of infection [13]. Studies on cytokine expression 
during F. gigantica infection in cattle are limited. 

In line with a helminth’s need to suppress inflammatory re­
sponses, a reported decrease in proinflammotory cytokines 
was observed. Since IL-12 is an important polarizing cytokine 
known to drive Th1 differentiation, the suppression in its level 
may be due to a Th1 suppression observed during F. gigantica 
co-infections [44]. At the same time, the reason of the increase 
of the levels of IL-10, TGF-β, and IL-6 is because that these cy­
tokines are traditionally associated with anti-inflammatory or 
regulatory responses [45]. 

In conclusion, it has been found that CP released by F. gi-

gantica are highly important candidates for a vaccine antigen 
because of their role in the fluke biology and host-parasite re­
lationships. Also, the CP-induced cellular and humoral im­
mune responses were associated with a modest reduction in 
the worm count, thus suggesting that CP immunization might 
be a safe and cost-effective strategy for reducing transmission 
of the infection.
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