DOI QR코드

DOI QR Code

반밀폐된 구획에서 발열량 변화에 따른 비정상 화재특성

Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-Closed Compartment

  • 투고 : 2012.01.19
  • 심사 : 2012.04.13
  • 발행 : 2012.04.30

초록

반밀폐된 구획에서 발열량 변화에 따른 환기부족화재의 비정상 열 및 화학적특성에 관한 실험적 연구가 수행되었다. 이를 위해 실규모 ISO 9705 표준화재실의 출입구 폭이 0.1 m로 축소되었으며, 구획 중앙에 설치된 분사노즐을 통해 헵탄 연료의 유량은 선형적으로 증가되었다. 구획 내부의 온도, 열유속, 화학종농도 그리고 발열량의 연속적 측정이 이루어졌으며, 비정상 열 및 화학적특성을 표현하기 위하여 총괄 당량비의 개념이 적용되었다. 주요 결과로서, 총괄 연소효율과 구획 내부의 국부 연소효율은 시간에 따라 매우 다른 결과를 보이며, 이론과 측정된 발열량을 통한 총괄 당량비 역시 큰 차이를 보이게 된다. 온도, 열유속 및 화학종 농도의 시간에 따른 변화는 총괄 당량비 개념를 통해 표현될 수 있었다. 구획 내부에서 CO의 농도는 총괄 당량비 2.0~3.0의 범위에서 최대값을 보이며, 보다 과농한 조건에서 점차적으로 감소되는 현상이 발견되었다. 추가로 본 실험을 통해 얻어진 반밀폐된 구획화재의 비정상 열 및 화학적 거동은 향후 현실적인 화재 모델링을 위한 검증 데이터로 활용될 수 있을 것으로 기대된다.

An experimental study was conducted to investigate the effects of change in heat release rate on unsteady fire characteristics of under-ventilated fire in a semi-closed compartment. A standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time using a spray nozzle located at the center of enclosure. Temperature, heat flux, species concentrations and heat release rate were continuously measured and then global equivalence ratio (GER) concept was adopted to represent the unsteady thermal and chemical characteristics inside the compartment. It was observed that there was a significant difference in unsteady behavior between global and local combustion efficiency, and the GERs predicted by ideal and measured heat release rate were also shown different results in time. The unsteady behaviors of temperature, heat flux and species concentrations were represented well using the GER concept. It was important to note that CO concentration was gradually decreased with the increase in GER after reaching its maximum value in the range of 2.0~3.0 of global equivalence ratio. In addition, the experimental data on unsteady thermal and chemical behaviors obtained in a semi-closed compartment will be usefully used to validate a realistic fire simulation.

키워드

참고문헌

  1. C.H. Hwang, A. Lock, M. Bundy, E. Johnsson, and G.H. Ko, "Effects of Fuel Location and Distribution on Full-scale Underventilated Compartment Fires", J. Fire Sci., Vol.29, pp.21-52(2011). https://doi.org/10.1177/0734904110372119
  2. I.R. Thomas, K.A. Moinuddin, and I.D. Bennetts, "The Effect of Quantity and Location on Small Enclosure Fires", J. Fire Protect. Eng., Vol.17, pp.85-102(2007). https://doi.org/10.1177/1042391506064908
  3. R. Kumar and M. Naveen, "An Experimental Fire in Compartment with Dual Vent on Opposite Walls", Combust. Sci. and Tech., Vol.179, pp.1527- 1547(2007). https://doi.org/10.1080/00102200701202650
  4. J.Q. Quintiere, W.J. Rinkinen, and W.W. Jones, "The Effect of Room Opening on Fire Plume Entrainment", Comb. Sci. Technol., Vol.26, pp.193- 201(1981). https://doi.org/10.1080/00102208108946960
  5. H.Y. Wang, "Numerical Study of Underventilated Fires in Medium-scale Enclosure", Building and Environment, Vol.44, pp.1215-1227(2009). https://doi.org/10.1016/j.buildenv.2008.09.011
  6. Y. Utiskul, J.G. Quintiere, A.S. Rangwala, B.A. Ringwelski, K. Wakatsuki, and T. Naruse, "Compartment Fire Phenomena Under Limited Ventilation", Fire Safety J., Vol.40, pp.367-390(2005). https://doi.org/10.1016/j.firesaf.2005.02.002
  7. C.H. Hwang, C.H. Park, G.H. Ko, and A. Lock, "Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part I: Performance Estimation of FDS)", J. of Korean Institute of Fire Sci. & Eng., Vol.24, No.3, pp.131- 138(2010).
  8. C.H. Hwang, C.H. Park, G.H. Ko, and A. Lock, "An Experimental Study on Relationship Between Global Equivalence Ratio and Fire Characteristics in Full-Scale Compartment Fires", J. of Korean Society of Combust., Vol.15, No.3, pp.32-39(2010).
  9. J.H. Kim, G.H. Ko, C.H. Park, and C.H. Hwang, "Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part II: Multi-dimensional Fire Dynamics)", J. of Korean Institute of Fire Sci. & Eng., Vol.24, No.5, pp.32- 38(2010).
  10. M. Bundy, A. Hamins, E.L. Johnsson, S.C. Kim, G.H. Ko, and D. Lenhert, "Measurement of Heat and Combustion Products in Reduced-scale Ventilationlimited Compartment Fires", NIST Technical Note 1483, NIST, Gaithersburg, MD(2007).
  11. J.E. Floyd and K.B. McGrattan, "Extending the Mixture Fraction Concept to Address Underventilated Fires", Fire Safety J., Vol.44, pp.291- 300(2009). https://doi.org/10.1016/j.firesaf.2008.07.002
  12. A. Lock, M. Bundy, E.L. Johnsson, A. Hamins, G.H. Ko, C.H. Hwang, P. Fuss, and R. Harris, "Experimental Study of the Effects of Fuel Type, Fuel Distribution, and Vent Size on Full-scale Underventilated Compartment Fires in an ISO 9705 Room", NIST TN 1603, NIST, Gaithersburg, MD (2008).
  13. A.Y. Snegirev, G.M. Makhviladze, V.A. Talalov, and A.V. Shamshin, "Turbulent Diffusion Combustion Under Conditions of Limited Ventilation: Flame Projection through an Opening", Combust. Expl. & Shock Waves, Vol.39, No.1, pp.1-10(2003). https://doi.org/10.1023/A:1022189816023
  14. M. Makhviladze, A.V. Shamshin, S.E. Yakush, and A.P. Zykov, "Experimental and Numerical Study of Transient Compartment Fires", Combust. Expl. & Shock Waves, Vol.42, No.6, pp.723-730 (2006). https://doi.org/10.1007/s10573-006-0107-6
  15. A. Chen, J. Francis, X. Dong, and W. Chen, "An Experimental Study of the Rate of Gas Temperature Rise in Enclosure Fires", Fire Safety J., Vol.46, pp.397-405(2011). https://doi.org/10.1016/j.firesaf.2011.06.006
  16. V. Novozhilov, "Nonlinear Dynamical Model of Compartment Fire Flashover", J. Eng. Math., Vol.67, pp.387-400(2010). https://doi.org/10.1007/s10665-009-9333-8
  17. S.R. Bishop and D.D. Drysdale, "Fires in Compartments: The Phenomenon of Flashover", Phil. Trans. R. Soc. Lond. A, Vol.356, pp.2855-2872 (1998). https://doi.org/10.1098/rsta.1998.0301
  18. R.A. Bryant, T.J. Ohlemiller, E.L. Johnsson, A. Hamins, B.S. Grove, W.F. Guthrie, A. Maranghides, and G.W. Mulholland, "The NIST 3 Megawatt Quantitative Heat Release Rate Facility - Description and Procedure", NIST 7052, NIST, Gaithersburg, MD(2004).
  19. G.H. Ko, C.H. Park, C.H. Hwang, and S.H. Park, "A Study on the Combustion Efficiency Concept in Under-ventilated Compartment Fires", J. of Korean Institute of Fire Sci. & Eng., Vol.24, No.6, pp.145- 152(2010).
  20. P. Glarborg, R.J. Kee, J.F. Grear, and J.A. Miller, "PSR: A Fortran Program for Modelling Well-stirred Reactors", Sandia Report No. SAND86-8209, Sandia National Laboratories, NM, Albuquerque(1986).

피인용 문헌

  1. Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room vol.26, pp.3, 2012, https://doi.org/10.7731/KIFSE.2012.26.3.021
  2. Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part I: Over-ventilated Fire Condition) vol.27, pp.2, 2013, https://doi.org/10.7731/KIFSE.2013.27.2.031
  3. Estimation of Pyrolysis Properties for Fire Propagation Analysis of Furniture Materials vol.27, pp.4, 2013, https://doi.org/10.7731/KIFSE.2013.27.4.41