DOI QR코드

DOI QR Code

TiO2@carbon Core-Shell Nanostructure Electrodes for Improved Electrochemical Properties in Alkaline Solution

  • Kim, Do-Young (Department of Chemical Engineering, Soongsil University) ;
  • Lee, Young-Woo (Department of Chemical Engineering, Soongsil University) ;
  • Han, Sang-Beom (Department of Chemical Engineering, Soongsil University) ;
  • Ko, A-Ra (Department of Chemical Engineering, Soongsil University) ;
  • Kim, Hyun-Su (Department of Chemical Engineering, Soongsil University) ;
  • Kim, Si-Jin (Department of Chemical Engineering, Soongsil University) ;
  • Oh, Sang-Eun (Department of Biological Environment, Kangwon National University) ;
  • Park, Kyung-Won (Department of Chemical Engineering, Soongsil University)
  • 투고 : 20120000
  • 심사 : 20120000
  • 발행 : 2012.05.31

초록

We report nanostructure electrodes with $TiO_2$ as a core and carbon as a shell ($TiO_2$@C) for oxygen reduction in alkaline solution. The structure of core-shell electrodes is characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction method, and X-ray photoelectron microscopy. The electrochemical properties of the $TiO_2$@C electrodes are characterized using a potentiostat and compared with those of carbon supported Pt catalyst. In particular, the core-shell electrode with dominant pyridinic-N component exhibits an imporved electrocatalytic activity for oxygen reduction reaction in alkaline solution.

키워드

참고문헌

  1. H. Li, H. Liu, Z. Jong, W. Qu, D. Geng, X. Sun, and H. Wang, Int. J. Hydrog. Energy, 36, 2258 (2011). https://doi.org/10.1016/j.ijhydene.2010.11.025
  2. Q. Yue, K. Zhang, X. Chen, L. Wang, J. Zhao, J. Liu, J. Jia, Chem. Commun., 46, 3369 (2010). https://doi.org/10.1039/c000084a
  3. K.P. Gong, F. Du, Z.H. Xia, M. Durstock, and L.M. Dai, Science, 323, 760 (2009). https://doi.org/10.1126/science.1168049
  4. Y. Tang, B.L. Allen, and D.R. Kauffman, A. Star, J. Am. Chem. Soc., 131, 13200 (2009). https://doi.org/10.1021/ja904595t
  5. T. Iwazaki, R. Obinata, W. Sugimoto, and Y. Takasu, Electrochem. Commun., 11, 376 (2009). https://doi.org/10.1016/j.elecom.2008.11.045
  6. R.A. Sidik and A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, J. Phys. Chem. B, 110, 1787 (2006). https://doi.org/10.1021/jp055150g
  7. T. C. Nagaiah, S. Kundu, M. Bron, M. Muhler, and W. Schuhmann, Electrochem. Commun., 12, 338 (2010). https://doi.org/10.1016/j.elecom.2009.12.021
  8. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Nature, 412, 169 (2001). https://doi.org/10.1038/35084046
  9. S. Shanmugam and T. Osaka, Chem. Commun., 47, 4463 (2011). https://doi.org/10.1039/c1cc10361j
  10. Z. Chen, D. Higgins, and Z. Chen, Electrochim. Acta, 55, 4799 (2010). https://doi.org/10.1016/j.electacta.2010.03.057
  11. M. Lefèvre and J. P. Dodelet, Electrochim. Acta, 48, 2749 (2003). https://doi.org/10.1016/S0013-4686(03)00393-1
  12. G. Lalande, R. Cote, D. Guay, J. P. Dodelet, L. T. Weng, and P. Bertrand, Electrochim. Acta, 42, 1379 (1997). https://doi.org/10.1016/S0013-4686(96)00361-1
  13. V. V. Strelko, V. S. Kuts, and P. A. Thrower, Carbon, 38, 1499 (2000). https://doi.org/10.1016/S0008-6223(00)00121-4
  14. R. Wang, J. Jia, H. Li, X. Li, H. Wang, Y. Chang, J. Kang, and Z. Lei, Electrochim. Acta, 56, 4526 (2011). https://doi.org/10.1016/j.electacta.2011.02.066
  15. S. V. Dommele, K. P. Jong, and J.H. Bitter, Chem. Commun., 48, 4859 (2006).
  16. A. Zamudio, A. L. Elyas, J. A. Rodriguez-Manzo, F. Lopez-Urias, G. Rodriguez-Gattorno, F. Lupo, M. Ruhle, D. J. Smith, H. Terrones, D. Diaz, and M. Terrones, Small, 3, 346 (2006).
  17. X. Li , B. N. Popov, T. Kawahara, and H. Yanagi, J. Power Sources, 196, 1717 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.018
  18. P. H. Matter, L. Zhang, and U. S. Ozkan, J. Catal., 239, 83 (2006). https://doi.org/10.1016/j.jcat.2006.01.022
  19. K. A. Kurak and A. B. Anderson, J. Phys. Chem. C, 113, 6730 (2009).
  20. L. Xiong, and A. Manthiram, Electrochim. Acta, 49, 4163 (2004). https://doi.org/10.1016/j.electacta.2004.04.011