DOI QR코드

DOI QR Code

Esterification Reaction of Animal Fat for Bio-diesel Production

바이오디젤 생산을 위한 동물성 오일의 에스테르화 반응

  • Kim, Sung-Min (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Deog-Keun (Bio-energy Research Center, Korea Institute of Energy Research) ;
  • Lee, Jin-Suk (Bio-energy Research Center, Korea Institute of Energy Research) ;
  • Park, Soon-Chul (Bio-energy Research Center, Korea Institute of Energy Research) ;
  • Rhee, Young-Woo (Graduate School of Green Energy Technology, Chungnam National University)
  • 김성민 (충남대학교 바이오응용화학과) ;
  • 김덕근 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 이진석 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 박순철 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 이영우 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2012.03.12
  • Accepted : 2012.03.21
  • Published : 2012.03.30

Abstract

In this study, the production of bio-diesel from animal oil by esterification and trans-esterification was investigated. There were three different extraction methods for oil extraction from raw animal fat. Heterogeneous catalysts such as Amberlyst-15 and Amberlyst BD-20 and a homogeneous catalyst such as sulfuric acid were used for esterification. Among three catalysts, the removal efficiency of Free Fatty Acid (FFA) was the highest in sulfuric acid. Response surface method was carried out to find the optimal esterification condition of sulfuric acid and methanol. After the esterification under the optimal condition, this animal fat was used for the trans-esterification. Animal oil used for trans-esterification was below 1% of FFA content and 0.09% of water content. The catalysts for trans-esterification were KOH, NaOH and $NaOCH_3$. To investigate the effects of catalyst type and amount on trans-esterification, The amount of catalyst were changed with 0.3, 0.6 and 0.9 wt%. The molar ratio of methanol/oil was changed with 4, 6, 9 and 12. The amount of catalyst was fixed to 0.8 wt%. The KOH catalyst showed the highest FAME conversion for trans- esterification, and the optimal methanol/oil weight ratio was 6. In the experiments of various catalysts and methanol molar ratios, the highest content of FAME is 96%. However, this FAME content was below Korean bio-diesel standard which is 96.5% of FAME content. After distillation, FAME content increased to 98%.

본 연구에서는 동물성 오일로부터 바이오디젤 생산을 위한 에스테르화 반응과 전이에스테르화 반응을 실시하였다. 원료 초기 상태인 동물성 비계로부터 오일을 추출하기 위해 3개의 추출법을 적용하였다. 에스테르화 반응은 불균질계 촉매인 Amberlyst-15와 Amberlyst BD-20 그리고 균질계 촉매인 황산이 사용되었다. 3가지 촉매 중 유리지방산 제거 효율이 가장 높은 촉매는 황산으로 나타났으며 에스테르화 반응에 대한 황산과 메탄올의 최적 투입량 결정을 위해 반응표면분석법(Response Surface Method, RSM)을 적용하였다. 에스테르화 최적 조건 도출 후 유리지방산이 제거된 오일을 이용해 전이에스테르화 반응을 진행하였다. 전이에스테르화 반응 원료의 유리지방산 함량은 1% 이하이며 수분함량은 0.090% 이하였다. 촉매는 KOH, NaOH, $NaOCH_3$를 이용하였으며 무수메탄올에 녹여 사용하였다. 촉매 종류 및 투입량에 따른 영향을 관찰하기 위해 촉매 투입량을 0.3, 0.6, 0.9 wt%로 사용하였고 메탄올은 26.7 wt%로 고정하였다. 알코올 투입량에 따른 영향 실험은 투입량을 오일대비 4 : 1, 6 : 1, 9 : 1, 12 : 1로 변경하여 실시하였으며 촉매양은 0.8 wt%로 고정하였다. 촉매와 알코올 외 반응변수는 모두 동일하게 적용하였다. 반응온도는 메탄올의 끓는점인 $65^{\circ}C$로 설정하였고 내부 온도계를 설치해 반응물의 온도를 측정하였다. 촉매 투입량 변경실험 후 KOH의 FAME 전환율이 높은 것을 확인하였다. 메탄올 투입량 변경실험은 오일대비 6 : 1 이상 사용했을 때 전환율이 높았다. 촉매, 메탄올 변경 실험 중 가장 높은 FAME 함량은 96.0%였으며 품질규격인 96.5%에는 미달하였다. FAME 함량증가 및 불순물 제거를 위해 바이오디젤 증류를 실시하였다. 이때 FAME 함량은 98%로 나타났다.

Keywords

References

  1. Saka, S., and Kusdiana, D., "Biodiesel Fuel from Rapeseed Oil as Prepared in Supercritical Methanol," Fuel, 80, 225-231 (2001). https://doi.org/10.1016/S0016-2361(00)00083-1
  2. Han, S.-R., and Chung, Y.-S., "Comparisons of Environmental Characteristics Between Diesel and Dimethyl Ether as Fuels," Clean Technol., 14(2), 144-151 (2008).
  3. Srivastava, A., and Prasad, R., "Triglycerides-based Diesel Fuels," Renew. Sust. Energ. Rev., 4, 111-133 (2000). https://doi.org/10.1016/S1364-0321(99)00013-1
  4. Lee, Y.-W., Song, E.-S., and Kim, H.-Y., "Synthesis of Biodiesel Using Supercritical Fluid," Clean Technol., 11(4), 171-179 (2005).
  5. Ataya, F., Dube, M. A., and Ternan, M., "Acid-catalyzed Transesterification of Canola Oil to Biodiesel under Single and Two-phase Reaction Conditions," Energy Fuels, 21(4), 2450-2459 (2007). https://doi.org/10.1021/ef0701440
  6. Dias, J. M., Alvim-Ferraz, M. C. M., and Almeida, M. F., "Comparison of the Performance of Different Homogeneous Alkali Catalysts During Transesterification of Waste and Virgin Oils and Evaluation of Biodiesel Quality," Fuel, 87, 3572-3578 (2008). https://doi.org/10.1016/j.fuel.2008.06.014
  7. Cunha, M. E., Krause, L. C., Moraes, M. S. A., Faccini, C. S., Jacques, R. A., Almeida, S. R., Rodrigues, M. R. A., and Caramao, E. B., "Beef Tallow Biodiesel Produced in a Pilot Scale," Fuel Process. Technol., 90, 570-575 (2009). https://doi.org/10.1016/j.fuproc.2009.01.001
  8. Nelson, L. A., Foglia, T. A., and Marmer, W. N., "Lipasecatalyzed Production of Biodiesel," J. Am. Oil Chem. Soc., 73, 1191-1195 (1996). https://doi.org/10.1007/BF02523383
  9. Hong, Y.-K., Huh, Y.-S., Hong, W.-H., and Oh, S.-W., "Pretreatment of Vegetable Oil Using Ion-exchange Resin and Biodiesel Production," Clean Technol., 13(2), 104-108 (2007).
  10. Lee, H.-S., Choi, J.-H., Shin, Y.-H., Lim, Y.-S., Han, C.-H., Kim, H.-Y., and Lee, Y.-W., "Effect of Additives on the Contents of Fatty Acid Methyl Esters of Biodiesel Fuel in the Transesterification of Palm Oil with Supercritical Methanol," Korean Chem. Eng. Res., 46(4), 747-751 (2008).
  11. Zhang, Y., Dubé, M. A., McLean, D. D., and Kates, M., "Biodiesel Production from Waste Cooking Oil: 1. Process Design and Technological Assessment," Bioresour. Technol., 89, 1-16 (2003). https://doi.org/10.1016/S0960-8524(03)00040-3
  12. Meher, L. C., Sagar, D. V., and Naik, S. N., "Technical Aspects of Biodiesel Production by Transesterification-a Review," Renew. Sust. Energ. Rev., 10, 248-268 (2006). https://doi.org/10.1016/j.rser.2004.09.002
  13. Jeong, G.-T., Yang, H.-S., and Park, D.-H., "Optimization of Transesterification of Animal fat Ester Using Response Surface Methodology," Bioresour. Technol., 100, 25-30 (2009). https://doi.org/10.1016/j.biortech.2008.05.011
  14. Canoira, L., Rodrigues-Gamero, M., Querol, E., Alcantara, R., Lapuerta, M., and Oliva, F., "Biodiesel from Low-grade Animal Fat: Production Process Assessment and Biodiesel Properties Characterization," Ind. Eng. Chem. Res., 47(21), 7997-8004 (2008). https://doi.org/10.1021/ie8002045
  15. Choi, J.-D., Kim, D.-K., Park, J.-Y., Rhee, Y.-W., and Lee, J.-S., "Optimization of Esterification of Jatropha Oil by Amberlyst- 15 and Biodiesel Production," Korean Chem. Eng. Res., 46(1), 194-199 (2008).
  16. Kim, D.-K., Choi, J.-D., Park, J.-Y., Lee, J.-S., Park, S.-B., and Park, S.-C., "Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production," Korean Chem. Eng. Res., 47(6), 762-767(2009).
  17. Jain, S., Sharma, M. P., "Review of Different Test Methods for the Evaluation of Stability of Biodiesel," Renew. Sust. Energ. Rev., 14, 1937-1947 (2010). https://doi.org/10.1016/j.rser.2010.04.011
  18. Hong, Y.-K., and Hong. W.-H., "Biodiesel Production Technology and Its Fuel Properties," Korean Chem. Eng. Res., 45 (5), 424-432 (2007).
  19. Kim, Y.-J., Kim, D.-K., Rhee, Y.-W., Park, S.-C., and Lee, J.-S., "A Kinetic Study on the Esterification of Oleic Acid with Methanol in the Presence of Amberlyst-15," Korean Chem. Eng. Res., 43(5), 621-626 (2005).
  20. Meher, L. C., Sagar, D. V., Naik, S. N., "Technical Aspects of Biodiesel Production by Transesterification-a Review," Renew. Sust. Energ. Rev., 10, 248-268 (2006). https://doi.org/10.1016/j.rser.2004.09.002
  21. Yujaroen, D., Goto, M., Sasaki, M., Shotipruk, A., "Esterification of Palm Fatty Acid Distillate (PFAD) in Supercritical Methanol: Effect of Hydrolysis on Reaction Reactivity," Fuel, 88, 2011-016 (2009). https://doi.org/10.1016/j.fuel.2009.02.040
  22. Ramos, M. J., Fernandez, C. M., Casas, A., Rodriguez, L., Perez, A., "Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties," Bioresour. Technol., 100, 261- 268 (2009). https://doi.org/10.1016/j.biortech.2008.06.039

Cited by

  1. Effects of Compositions of Mixed Refrigerants on the Performance of a C3MR Natural Gas Liquefaction Process vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.314
  2. Esterification and Trans-esterification Reaction of Fish Oil for Bio-diesel Production vol.19, pp.3, 2013, https://doi.org/10.7464/ksct.2013.19.3.313
  3. 미세조류 유래 바이오디젤 품질 특성 및 차량 저온 성능평가 연구 vol.28, pp.5, 2012, https://doi.org/10.7316/khnes.2017.28.5.545
  4. 인도네시아 열대작물 오일의 Amberlyst-15 촉매 에스테르화 반응 및 바이오디젤 물성 분석 vol.36, pp.1, 2012, https://doi.org/10.12925/jkocs.2019.36.1.324
  5. Performance characteristics of a single-cylinder power tiller engine with biodiesel produced from mixed waste cooking oil vol.47, pp.1, 2012, https://doi.org/10.7744/kjoas.20190085
  6. Facies-Controlled Geostatistical Porosity Model for Estimation of the Groundwater Potential Area in Hongliu Coalmine, Ordos Basin, China vol.6, pp.15, 2012, https://doi.org/10.1021/acsomega.0c06166