DOI QR코드

DOI QR Code

Effect of Temperature and Reaction Time on the Synthesis of Butadiene Monoepoxide Using Iron Complex as an Efficient Catalyst

  • Received : 2012.02.10
  • Accepted : 2012.03.07
  • Published : 2012.03.30

Abstract

Here, we report an efficient iron complex $[((phen){_2}(H_2O)Fe^{III}){_2}({\mu}-O)](ClO_4){_4}$, that can rapidly epoxidize 1,3-butadiene at $-10^{\circ}C$ with low catalyst loadings by using commercially available peracetic acid as an oxidant. The main aspect of our study is to investigate the effect of temperature (from -10 to $-40^{\circ}C$) and time on the epoxidation reaction. The epoxidation reaction was fast and almost completed within 5 min at temperatures above $-20^{\circ}C$, whereas it became slow at temperatures below $-20^{\circ}C$. The yield of butadiene monoepoxide (BMO)increased with increasing the reaction time. Generally, when the more butadiene was used, the higher yield was obtained. The highest yield of BMO was 90%.

상업적으로 이용 가능한 과산화초산을 산화제로 사용하고, 적은 양으로 매우 빠르게 산화시킬 수 있는 효율적인 철복합체 $[((phen){_2}(H_2O)Fe^{III}){_2}({\mu}-O)](ClO_4){_4}$ 촉매를 사용하여 $-10^{\circ}C$에서 1,3-부타다이엔을 에폭시화하였다. 에폭시화반응에 대한 온도(-10 ~ $-40^{\circ}C$)와 시간의 효과에 관하여 연구하였다. 에폭시화반응은 $-20^{\circ}C$에서 약 5분 내에 거의 완결될 정도로 빨랐으나, 그 이하의 온도에서는 느려졌다. 부타다이엔의 수율은 반응시간에 따라 증가하였으며, 부타다이엔 양이 증가하면 수율도 증가하는 경향을 보였다. 실험에서 얻은 부타다이엔모노에폭사이드의 최고 수율은 90%였다.

Keywords

References

  1. Xie, H. L., Fan, Y. X., Zhou, C. H., Du, Z. X., Min, E. Z., Ge, Z. H., and Li, X. N., "A Review on Heterogeneous Solid Catalysts and Related Catalytic Mechanisms for Epoxidation of Olefins with $H_{2}O_{2}$," Chem. Biochem. Eng. Q., 22(1), 25-39 (2008).
  2. Grigoropoulou, G., Clark, J. H., and Elings, J. A., "Recent Development on The Epoxidation of Alkenes Using Hydrogen Peroxide as an Oxidant," Green Chem., 5(1), 1-7 (2003). https://doi.org/10.1039/b208925b
  3. Mizuno, N., Yamaguchi, K., and Kamata, K., "Epoxidation of Olefins with Hydrogen Peroxide Catalyzed by Polyoxometalates," Coord. Chem. Rev., 249(17-18), 1944-1956 (2005). https://doi.org/10.1016/j.ccr.2004.11.019
  4. Tan, W., Sha, L., and Zhao, B. X., "Application of Epoxides in Organic Synthesis," Chin. J. Synth. Chem., 11(5), 384-390 (2004).
  5. Sheldon, R. A., and Kochi, J. K., Metal-catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981.
  6. Hill, C. L., In Advances in Oxygenated Processes, A. L. Baumstark Ed, JAI Press Inc., London, 1988, pp. 1.
  7. Hudlicky, M., Oxidations in organic chemistry, ACS Monograph Series, American Chemical Society, Washington, DC, 1990.
  8. Thomas, E. W., Encyclopedia of Reagents for Organic Synthesis, USA, 2001.
  9. Chen, G., Zhuang, G. V., Richardson, T. J., Liu, G., and Ross, P. N., "Anodic Polymerization of Vinyl Ethylene Carbonate in Li-ion Battery Electrolyte," Electrochem. Solid-state Lett., 8 (7), A344-A347 (2005). https://doi.org/10.1149/1.1921127
  10. Jorgensen, K. A., "Transition Metal Catalyzed Epoxidations," Chem. Rev., 89(3), 431-458 (1989). https://doi.org/10.1021/cr00093a001
  11. Kamata, K., Yonehara, K., Sumida, Y., Yamaguchi, K., Hikichi, S., and Mizuno, N., "Efficient Epoxidation of Olefins with ${\geq}$ 99% Selectivity and Use of Hydrogen Peroxide," Sci., 300 (5621), 964-966 (2003). https://doi.org/10.1126/science.1083176
  12. Battioni, P., Renaud, J. P., Bartoli, J. F., Reina-artiles, M., Fort, M., and Mansuy, D., "Monooxygenase-like Oxidation of Hydrocarbons by Hydrogen Peroxide Catalyzed by Manganese Porphyrins and Imidazole: Selection of the Best Catalytic System and Nature of the Active Oxygen Species," J. Am. Chem. Soc., 110(25), 8462-8470 (1988). https://doi.org/10.1021/ja00233a023
  13. Notari, B., "Microporous Crystalline Titanium Silicates," Adv. Catal., 41, 253-334 (1996). https://doi.org/10.1016/S0360-0564(08)60042-5
  14. Romao, C. C., Ku¨hn, F. E., and Herrmann, W. A., "Rhenium (VII) Oxo and Imido Complexes: Synthesis, Structures, and Applications," Chem. Rev., 97(8), 3197-3246 (1997). https://doi.org/10.1021/cr9703212
  15. Venturello, C., Alneri, E., and Ricci, M., "A New, Effective Catalytic System for Epoxidation of Olefins by Hydrogen Peroxide under Phase-transfer Conditions," J. Org. Chem., 48 (21), 3831-3833 (1983). https://doi.org/10.1021/jo00169a052
  16. Ishii, Y., Yamawaki, K., Ura, T., Yamada, H., Yoshida, T., and Ogawa, M., "Hydrogen Peroxide Oxidation Catalyzed by Heteropoly Acids Combined with Cetylpyridinium Chloride. Epoxidation of Olefins and Allylic Alcohols, Ketonization of Alcohols and Diols, and Oxidative Cleavage of 1,2-diols and Olefins," J. Org. Chem., 53(15), 3587-3593 (1988). https://doi.org/10.1021/jo00250a032
  17. Sato, K., Aoki, M., Ogawa, M., Hashimoto, T., and Noyori, R., "A Halide Free Method for Olefin Epoxidation with 30% Hydrogen Peroxide," Bull. Chem. Soc. Jpn., 70(4), 905-915 (1997). https://doi.org/10.1246/bcsj.70.905
  18. Neumann, R., and Gara, M., "The Manganese-containing Polyoxometalate, $[WZnMn^{II}_{2}(ZnW_{9}O_{34})_{2}]^{12-}$, as a Remarkably Effective Catalyst for Hydrogen Peroxide Mediated Oxidations," J. Am. Chem. Soc., 117, 5066-5074 (1995). https://doi.org/10.1021/ja00123a008
  19. Mizuno, N., Nozaki, C., Kiyoto, I., and Misono, M., "Highly Efficient Utilization of Hydrogen Peroxide for Selective Oxygenation of Alkenes Catalyzed by Diiron-substituted Polyoxometalate Precursor," J. Am. Chem. Soc., 120(36), 9267-9272 (1998). https://doi.org/10.1021/ja980006c
  20. Dirk, D., Vos, De, Meinershagen, J. L., and Bein, T., "Highly Selective Epoxidation Catalysts Derived from Intrazeolite Trimethyltriazacyclononane- manganese Complexes," Angew. Chem. Int. Ed., 35(19), 2211-213 (1996). https://doi.org/10.1002/anie.199622111
  21. Clerici, M. G., Bellussi, G., and Romano, U., "Synthesis of Propylene Oxide from Propylene and Hydrogen Peroxide Catalyzed by Titanium Silicalite," J. Catal., 129(1), 159-167 (1991). https://doi.org/10.1016/0021-9517(91)90019-Z
  22. Swern, D., Organic peroxides, John Wiley & Sons, 1970.
  23. Palucki, M., McCormick, G. J., and Jacobsen, E. N., "Low Temperature Asymmetric Epoxidation of Unfunctionalized Olefins Catalyzed by (Salen)Mn(III) Complexes," Tetrahedron Lett., 36(31), 5457-5460 (1995). https://doi.org/10.1016/0040-4039(95)01088-Y
  24. Palucki, M., Pospisil, P. J., Zhang, W., and Jacobsen, E. N., "Highly Enantioselective, Low-temperature Epoxidation of Styrene," J. Am. Chem. Soc., 116(20), 9333-9334 (1994). https://doi.org/10.1021/ja00099a062
  25. Chang, S., Lee, N. H., and Jacobsen, E. N., "Regio- and Enantioselective Catalytic Epoxidation of Conjugated Polyenes: Formal Synthesis of LTA4 Methyl Ester," J. Org. Chem., 58 (25), 6939-6941 (1993). https://doi.org/10.1021/jo00077a001
  26. Zhang, W., Lee, N. H., and Jacobsen, E. N., "Nonstereospesific Mechanisms in Asymmetric Addition to Alkenes Result in Enantiodifferentiation after the First Irreversible Step," J. Am. Chem. Soc., 116(1), 425-426 (1994). https://doi.org/10.1021/ja00080a070
  27. Thomsen, D. S., Schiott, B., and Jorgensen, K. A., "Regioselective Monoepoxidation of 1,3-dienes Catalysed by Transition- metal Complexes," Chem. Commun., 15, 1072-1074 (1992).
  28. Rasmussen, K. G., Thomsen, D. S., and Jorgensen, K. A., "Regio- and Enantio-selective Catalytic Epoxidation of Conjugated Dienes," J. Chem. Soc. Perkins Trans., 1, 2009-2017 (1995).
  29. Murphy, A., Dubois, G., and Stack, T. D. P., "Effiecient Epoxidation of Electron-deficient Olefins with a Cationic Manganese Complex," J. Am. Chem. Soc., 125(18), 5250-5251 (2003). https://doi.org/10.1021/ja029962r
  30. White, M. C., Doyle, A. G., and Jacobsen, E. N., "A Synthetically Useful, Self-assembling MMO Mimic System for Catalytic Alkene Epoxidation with Aqueous $H_{2}O_{2}$," J. Am. Chem. Soc., 123(29), 7194-7195 (2001). https://doi.org/10.1021/ja015884g
  31. Dubois, G., Murphy, A., and Stack, T. D. P., "Simple Iron Catalyst for Terminal Alkene Epoxidation," Org. lett., 5(14), 2469-2472 (2003). https://doi.org/10.1021/ol0347085
  32. Yang, S. J., and Nam, W., "Water-soluble Iron Porpyhrin Complex- catalyzed Epoxidation of Olefins with Hydrogen Peroxide and Tert-butyl Hydroperoxide in Aqueous Solution," Inorg. Chem., 37(4), 606-607 (1998). https://doi.org/10.1021/ic9710519
  33. Ostovic, D., and Bruice, T. C., "Mechanism of Alkene Epoxidation by Iron, Chromium and Manganese Higher Valent Oxometalloporhyrins," Acc. Chem. Res., 25(7), 314-320 (1992). https://doi.org/10.1021/ar00019a007