DOI QR코드

DOI QR Code

Visual Inspection System for Irregularly Formed Timing Belt with Low Reflection Ratio

저반사비를 가진 비균질 타이밍 벨트를 위한 자동시각 검사시스템

  • Lee, Jae-Woo (School of Creative Science and Engineering, Waseda University) ;
  • Yoon, Joong-Sun (School of Mechanical Engineering, Pusan National University)
  • 이재우 (와세다대학교 창조이공학부) ;
  • 윤중선 (부산대학교 기계공학부)
  • Received : 2012.02.16
  • Accepted : 2012.05.10
  • Published : 2012.05.31

Abstract

Visual inspection systems are widely proposed for the well formed surface materials like electronics parts. But the materials with ill reflection ability have many troubles when visual inspection system is introduced. We have developed a robust visual inspection system that can work well in spite of low reflection ratio and with much noise when truth model is not known in the mixed production line. A workpiece identification technique using k-means has been proposed to identify the type. Based on the identified type, a robust-to-noise segmentation method, called active contour, has been applied to segment the features from the image. Finally, Kalman filter has been applied to adapt the error variation. Experiment shows that performance is about to match the accuracy of manual measurement using projectors.

본 시각 검사시스템은 전자 부품과 같이 잘 형성된 표면 재료에 널리 사용되고 있다. 반사 능력이 나쁜 재료의 경우, 시각 검사시스템이 도입될 때 많은 문제점이 발생한다. 혼합 생산 라인에서 진위의 모델을 알 수 없을 때 저 반사비와 많은 노이즈에도 잘 작동할, 강인한 시각 검사시스템을 개발하였다. 유형을 인식하기 위하여 k-means를 이용한 작업물 인식 기법이 제안되었다. 인식 유형에 기반하여 active contour라는 노이즈에 강인한 분할 기법이 영상에서 특징을 분할하는데 응용되었다. 오차 변화를 조정하는데 Kalman 필터가 사용되었다. 자동시각 검사시스템의 실험은 프로젝터를 이용한 수작업 측정의 정확도 수준을 보여준다.

Keywords

References

  1. A. P. Dempster, N. M. Laird and D.B. Rubin, "Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm", Journal of Royal Statistical Society, vol. 39, no. 1, pp. 1-38, 1977.
  2. H. Gu, G.-D. Su, C. Du, "Fuzzy and ISODATA Classification of Face Contours", Proceedings of International Conference of Machine Learning and Cybernetics, 26-29, August, 2004.
  3. R. O. Duda and P. E. Hart, "Use of the Hough Transform to Detect Lines and Curves in Pictures", Comm. ACM, vol. 15, no. 1, pp. 11-15, Jan. 1972. https://doi.org/10.1145/361237.361242
  4. M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active Contour Models", International Conference on Computer Vision, pp. 259-268, 1987.
  5. A. A. Amini, T. E. Weymouth, and R. C. Jain, "Using Dynamic Programming for Solving Variational Problems in Vision", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 9, pp. 855-867, 1990. https://doi.org/10.1109/34.57681
  6. S. J. Julier and J. K. Uhlmann, "A New Extension of the Kalman Filter to Nonlinear Systems", Proceedings of International Symposium on Aerospace/Defense Sensing, Simulation and Controls, 1997.
  7. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Recognition, 2nd Edition, Wiley and Sons, pp. 27-30, 2000.
  8. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2009.
  9. G. Bradsky and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library, O'Reilly Media, 1st edition, 2008.