DOI QR코드

DOI QR Code

Culture Condition for Listeria monocytogenes 1421 Biofilm Formation and the Effect of Kimchi on Biofilm

Biofilm 형성을 위한 Listeria monocytogenes 1421의 배양 조건과 김치에 의한 영향

  • Kim, Eun-Ah (Department of Food Science & Technology, Pusan National University) ;
  • Mang, So-Yeon (Department of Food Science & Technology, Pusan National University) ;
  • Seong, Jong-Hwan (Department of Food Science & Technology, Pusan National University) ;
  • Lee, Young-Guen (Department of Food Science & Technology, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science & Technology, Pusan National University) ;
  • Kim, Dong-Seob (Department of Food Science & Technology, Pusan National University)
  • Received : 2012.01.31
  • Accepted : 2012.05.14
  • Published : 2012.05.30

Abstract

$Listeria$ $monocytogenes$, a fatal food-borne pathogenic bacteria, can form a biofilm on many different supports. The biofilm gives $L.$ $monocytogenes$ more viability and resistance to disinfectants and sterilization procedures.$L.$ $monocytogenes$ formed biofilms on various culture vessels tested in this experiment and showed the maximum amount of biofilm when it was cultured for 4 days at $30^{\circ}C$ in BHI broth. In this study, biofilm formation was stimulated or inhibited by addition of different Kimchi samples. That was not in accordance with the effect of Kimchi on the growth of $L.$ $monocytogenes$.

식품으로부터 유래되어 치명적인 질병을 유발하는 $Listeria$ $monocytogenes$는 다양한 지지체 위에 biofilm을 형성할 수 있다. 이러한 biofilm은 여러 가지 소독제나 살균과정으로부터 $L.$ $monocytogenes$의 생존력이나 저항성을 증가시켜 준다. 본 연구에서도 $L.$ $monocytogenes$는 다양한 배양용기에서 biofilm을 형성하였으며, BHI를 배지로 하여 $30^{\circ}C$에서 4일 동안 배양하였을 때 최대의 biofilm을 형성하였다. $L.$ $monocytogenes$의 biofilm의 형성에 미치는 김치의 효과를 살펴본 결과 김치를 첨가함에 따라 biofilm의 양이 줄어들기도 하고 늘어나기도 하여, 김치에 따라 다른 영향을 미치는 것으로 여겨졌으며, 이러한 결과는 $L.$ $monocytogenes$의 생육에 미치는 김치의 효과와는 차이가 있었다.

Keywords

References

  1. Amy, C. 1998. Biofilm in food processing environments. J. Dairy Sci. 81, 2765-2770. https://doi.org/10.3168/jds.S0022-0302(98)75834-5
  2. Beresford, M. R., Andrew, P. W. and Shama, G. 2001. Listeria monocytogenes adheres to many materials found in food-processing environments. J. Appl. Microbiol. 92, 556-565.
  3. Blackman, I. C. and Frank, J. E. 1996. Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J. Food Prot. 59, 827-831.
  4. Chae, M. S. 2001. Cell viability of Listeria monocytogenes biofilms. Food Microbiol. 18, 103-112. https://doi.org/10.1006/fmic.2000.0374
  5. Chae, M. S. and Schraft, H. 2000. Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int. J. Food Microbiol. 62, 103-111. https://doi.org/10.1016/S0168-1605(00)00406-2
  6. Chae, M. S. and Schraft, H., Truelstrup, L. H. and Mackereth, R. 2006. Effect of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass. Food Microbiol. 23, 250-259. https://doi.org/10.1016/j.fm.2005.04.004
  7. Djordjevic, D., Wiedmann, M. and McLandsborough, L. A. 2002. Microtiter plate ssay for assessment of Listeria biofilm formation. Appl. Environ. Microbiol. 68, 2950-29588. https://doi.org/10.1128/AEM.68.6.2950-2958.2002
  8. Drenkard, E. and Ausubel, F. M. 2002. Peudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740-743. https://doi.org/10.1038/416740a
  9. Gorski, L., Palumbo, J. D. and Mandrell, R. E. 2003. Attachment of Listeria monocytogenes to radish tissue is dependent upon temperature and flagella mobility. Appl. Environ. Microbiol. 69, 258-266. https://doi.org/10.1128/AEM.69.1.258-266.2003
  10. Helke, D. M. and Wong, A. C. I. 1994. Survival and growth characteristics of Listeria monocytogenes and Salmonella typhimurium on stainless steel and buns-n rubber. J. Food Prot. 57, 963-968.
  11. Hong, J. S. 2007. Biochemical characterization of bacteriocin produced by lactic acid bacteria isolated from kimchi. M. S. Thesis, Ajou University, Suwon, Korea.
  12. Juntilla, J. R., Niemela, S. I. and Hirn, J. 1988. Minimum growth temperatures of Listeria monocytogenes and non-haemolytic Listeria. J. Appl. Bacteriol. 65, 321-327. https://doi.org/10.1111/j.1365-2672.1988.tb01898.x
  13. Kalmokoff, M. L., Austin, J. W., Wan, X. D., Sanders, G., Banerjee, S. and Farber, J. M. 2001. Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J. Appl. Microbiol. 91, 725-734. https://doi.org/10.1046/j.1365-2672.2001.01419.x
  14. Kang, C. H., Chung, K. O. and Ha, D. M. 2002. Inhibitory effect on the growth of intestinal pathogenic bacteria by Kimchi fermentation. Korean J. Food Sci. Technol. 34, 480-486.
  15. Kang, S. Y. and Han, M. J. 2005. Effect of Kimchi ingredients on the growth of pathogenic and lactic acid bacteria. Korean J. Cookery Sci. 21, 838-843.
  16. Kim, H. J. and Chang, H. C. 2006. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi. Kor. J. Microbial. Biotechnol. 34, 196-203.
  17. Kim, H. J., Hwang-Bo, M. H., Lee, H. J., Yu, T. S. and Lee, I. S. 2005. Antibacterial and anticancer effects of Kimchi extracts prepared by Monascus purpureus Koji paste. Korean J. Food Sci. Technol. 37, 618-623.
  18. Kim, J. H. 1995. Inhibition of Listeria monocytogenes by bacteriosin(s) from lactic acid bacteria isolated from Kimchi. Agri. Chem. Biochem. 38, 302-307.
  19. Kim, M., Lee, S. J., Seul, K. J., Park, Y. M. and Ghim, S. Y. 2009. Characterization of antimicrobial substance produced by Lactobacillus paraplantarum KNUC25 isolated from Kimchi. Kor. J. Microbial. Biotechnol. 37, 24-32.
  20. Lee, S. G., Han, K. S., Jeong, S. G., Oh, M. H., Jang, A., Kim, D. H., Bae, I. H. and Ham, J. S. 2010. A study on the sensory characteristic of yogurt and antimicrobial activity of Lactobacillus plantarum LHC52 isolated from Kimchi. Korean J. Food Sci. Ani. Resour. 30, 328-335. https://doi.org/10.5851/kosfa.2010.30.2.328
  21. Lee, S. H., Kim, M. K. and Frank, J. F. 1995. Growth of Listeria monocytogenes during Kimchi fermentation and in the presence of Kimchi ingredients. J. Food Protec. 58, 1215-1218.
  22. Mafu, A. A., Roy, D., Goulet, J. and Magny, P. 1990. Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact time. J. Food Prot. 53, 742-746.
  23. Mah, T. F. and O'Toole, G. A. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34-39. https://doi.org/10.1016/S0966-842X(00)01913-2
  24. McCarthy, S. A. 1990. Listeria in the environment, pp. 25-29, Foodborne Listeriosis. Elsevier Science Publishing, Inc. New York.
  25. Mittelman, M. W. 1998. Structure and functional characteristics of bacterial biofilms in fluid processing operations. J. Dairy Sci. 81, 2760-2764. https://doi.org/10.3168/jds.S0022-0302(98)75833-3
  26. Moretro, T. and Langsrud, S. 2004. Listeria monocytogenes: biofilm formation and persistence in food-processing environments. Biofilms. 1, 107-121. https://doi.org/10.1017/S1479050504001322
  27. O'Toole, G., Kaplan, H. B. and Kolter, R. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49-79. https://doi.org/10.1146/annurev.micro.54.1.49
  28. Palmer, R. Jr. W. D. 1997. Developmental biology of biofilms: implecations for treatment and control. Trends Microbiol. 5, 431-437.
  29. Pan, Y., Breidt, F. Jr. and Kathariou, S. 2006. Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated process environment. Appl. Environ. Microbiol. 72, 7711-7717. https://doi.org/10.1128/AEM.01065-06
  30. Petran, R. 1989. A study of factors affecting growth and recovery of Listeria monocytogenes. J. Food Sci. 54, 458-460. https://doi.org/10.1111/j.1365-2621.1989.tb03105.x
  31. Prett, L. A. and Kolter, R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, mobility, chemotaxis and type I pili. Mol. Microbiol. 30, 285-293. https://doi.org/10.1046/j.1365-2958.1998.01061.x
  32. Sheo, H. J. and Seo, Y. S. 2003. The Antibacterial Action of Chinese Cabbage Kimchi Juice on Staphylococcus aureus, Salmonella enteritidis, Vibrio parahaemolyticus and Enterobacter cloacae. J. Korean Soc. Food Sci. Nutr. 32, 1351-1356. https://doi.org/10.3746/jkfn.2003.32.8.1351
  33. Shin, S. M., Park, J. Y. and Hahn, Y. S. 2005. Antimicrobial effect of Kimchi ingredients of methanol extract on pathogenic microorganisms. Kor. J. Food Cook. Sci. 21, 53-63.
  34. Song, Y. J., Park, S. H., You, J. Y., Cho, Y. S. and Oh, K. H. 2009. Antibacterial activity against food-poisoning causing bacteria and characterization of Lactobacillus plantarum YK-9 isolated from Kimchi. KSBB J. 24, 273-278.
  35. Stepanovic, S., Cirkovic, I., Ramin, L. and Svabic-Vlahovic, M. 2004. Biofilm formation by salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 38, 428-432. https://doi.org/10.1111/j.1472-765X.2004.01513.x
  36. Stewart, P. S., Rayner, J., Roe, F. and Rees, W. M. 2001. Biofilm penetration and disinfection efficiency of alkaline hypochlorite and chlorosulfamates. J. Appl. Microbiol. 91, 525-532. https://doi.org/10.1046/j.1365-2672.2001.01413.x
  37. Watnick, P. I. and Kolter, R. 1999. Steps in the development of a Vibrio cholerae EI Tor biofilm. Mol. Microbiol. 34, 586-595. https://doi.org/10.1046/j.1365-2958.1999.01624.x
  38. Whitely M., Bangera, M. G., Bumgarner, R. E., Parset, M. R., Teitzei, G. M., Lory, S. and Greenberg, E. P. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860-864. https://doi.org/10.1038/35101627
  39. Wong, A. 1998. Biofilms in food processing environments. J. Dairy Science 81, 2765-2770. https://doi.org/10.3168/jds.S0022-0302(98)75834-5