DOI QR코드

DOI QR Code

Arabidopsis phytochrome mutant에서 빛이 뿌리 생장과 굴중성 반응에 미치는 영향

Effect of Light on Root Growth and Gravitropic Response of Phytochrome Mutants of Arabidopsis

  • Park, Ji-Hye (Department of Biological Sciences, Andong National University) ;
  • Lee, Sang-Seoung (Department of Biological Sciences, Andong National University) ;
  • Woo, Soon-Hwa (Department of Biological Sciences, Andong National University) ;
  • Kim, Soon-Young (Department of Biological Sciences, Andong National University)
  • Received : 2012.04.03
  • Accepted : 2012.05.07
  • Published : 2012.05.30

Abstract

빛이 굴중성과 뿌리 생장에 미치는 영향을 알아보기 위해 Arabidopsis phytochrome mutant를 이용하여 뿌리 생장과 굴중성 반응을 측정하였다. $PhyA$의 뿌리 생장은 white light를 제외한 모든 빛 조건에서 WT와 비교하여 촉진되었다. 특히 red light에서 키웠을 때 다른 mutant와는 달리 뿌리 생장이 촉진되었다. 반면에 phyB는 모든 빛 조건에서 키웠을 때 뿌리 생장이 억제되었으며, 특히 double mutant인 $phyAB$는 white light와 red light에서 키웠을 때 뿌리 생장이 가장 많이 억제되었다. $PhyA$의 굴중성 반응은 far-red light에서 키웠을 때를 제외하고 모든 빛 조건에서 키웠을 때 WT와 비교하여 촉진되었다. 한편 $phyAB$는 모든 조건에서 모두 굴중성 반응이 억제되었다. Ethylene 생합성을 조절하는 효소인 ACS transcript 수준은 white light와 red light에서 키웠을 때 $phyA$가 높게 나타났으며, far-red light에서 키웠을 때는 $phyA$의 transcript 수준이 억제되었다. 결론적으로 뿌리 생장과 굴중성 반응은 $phyB$$P_{fr}$에 의해 조절된다.

Light, one of the environmental stimuli, is fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. To investigate the effect of light on root growth and gravitropism, we used the Arabidopsis phytochrome mutants grown in several light conditions. The root growth of $phyA$ reared in all light conditions except white light and was stimulated compared to the WT. The stimulation of root growth was obvious in $phyA$ grown in red light. On the other hand, the root growth of $phyB$ grown in all light conditions decreased, and the lowest rate of decrease was observed in $phyAB$ grown in white and red light. The gravitropic response of $phyA$ was stimulated compared to the WT when it was grown in all light conditions except far-red light. $PhyAB$ grown in all light conditions showed the inhibition of gravitropic response. The transcript level of ACS, one of the enzymes regulating ethylene biosynthesis, increased in $phyA$ grown in white and red light, but not in $phyA$ grown in far-red light. In conclusion, these results suggested that the $P_{fr}$ form of $phyB$ regulates the root growth and gravitropism.

Keywords

References

  1. Bleecker, A. B. and Kende, H. 2000. Ethylene: a gaseous signal molecule in plants. Ann. Rev. Cell. Dev. Biol. 16, 1-18 https://doi.org/10.1146/annurev.cellbio.16.1.1
  2. Bou-Torrent, J., Roig-Villanova, I. and Martinez-Garcia, J. F. 2008. Light signaling: back to space. Trends Plant Sci. 13, 108-114. https://doi.org/10.1016/j.tplants.2007.12.003
  3. Correll, M. J., Coveney, K. M., Raines, S. V., Mullen, J. L., Hangarter, R. P. and Kiss, J. Z. 2003. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots. Adv. Space Res. 31, 2203-2210. https://doi.org/10.1016/S0273-1177(03)00245-X
  4. Foo, E., Bullier, E., Goussot, M., Foucher, F., Rameau, C. and Beveridge, C. A. 2005. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17, 464-474. https://doi.org/10.1105/tpc.104.026716
  5. Foo, E., Ross, J. J., Davies, N. W., Reid, J. B. and Weller, J. L. 2006. A role for ethylene in the phytochrome-mediated control of vegetative development. Plant J. 46, 911-921. https://doi.org/10.1111/j.1365-313X.2006.02754.x
  6. Galen, C., Rabenold, J. J. and Liscum, E. 2007. Functional ecology of a blue light photoreceptor: effects of phototropin-1 on root growth enhance drought tolerance in Arabidopsis thaliana. New Phytol. 173, 91-99. https://doi.org/10.1111/j.1469-8137.2006.01893.x
  7. Hennig, L, Stoddart, W. M., Dieterle, M., Whitelam, G. C. and Schafer, E. 2002. Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 128, 194-200. https://doi.org/10.1104/pp.010559
  8. Ivanchenko, M. G., Muday, G. K. and Dubrovsky, J. G. 2008. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J. 55, 335-347. https://doi.org/10.1111/j.1365-313X.2008.03528.x
  9. Kiss, J. Z., Mullen, J. L., Correll, M. J. and Hangarter, R. P. 2003. Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol. 131, 1411-1417. https://doi.org/10.1104/pp.013847
  10. Leasure, C., D., Tong, H., Yuen, G., Hou, X., Sun, X. and He, Z. H. 2009. ROOT UV-B SENSITIVE2 acts with ROOT UV-B SENSITIVE1 in a root ultraviolet B-sensing pathway. Plant Physiol. 150, 1902-1915. https://doi.org/10.1104/pp.109.139253
  11. Mandoli, D. F. and Briggs, W. R. 1982. The photoperceptive sites and the function of tissue light-piping in photomorphogenesis of etiolated oat seedlings. Plant Cell Environ. 5, 137-145. https://doi.org/10.1111/1365-3040.ep11571543
  12. Molas, M. L., Kiss, J. Z. and Correll, M. J. 2006. Gene profiling of the red light signaling pathway in roots. J. Exp. Bot. 57, 3217-3229. https://doi.org/10.1093/jxb/erl086
  13. Morita, M. Y. and Tasaka, M. 2004. Gravity sensing and signaling. Curr. Opi. Plant Biol. 7, 712-718. https://doi.org/10.1016/j.pbi.2004.09.001
  14. Muday, G. K. and DeLong, A. 2001. Polar auxin transport: controlling where and how much. Trends Plant Sci. 6, 535-542. https://doi.org/10.1016/S1360-1385(01)02101-X
  15. Salisbury, F. J., Hall, A., Grierson, C. S. and Halliday, K. J. 2007. Phytochrome coordinates Arabidopsis shoot and root development. Plant J. 50, 429-438. https://doi.org/10.1111/j.1365-313X.2007.03059.x
  16. Takano, M., Kanegae, H., Shinomura, T., Miyao, A., Hirochika, H. and Furuya, M. 2001. Isolation and characterization of rice phytochrome A mutants. Plant Cell 13, 521-534. https://doi.org/10.1105/tpc.13.3.521
  17. Woo, S. H., Oh, S. E., Kim, J. S., Mullen, J. L., Hangarter, R. P. and Kim, S. Y. 2008. Root Gravitropic Response of Phytochrome Mutant (phyAB) in Arabidopsis. J. Life Sci. 18, 148-153 https://doi.org/10.5352/JLS.2008.18.2.148
  18. Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W. F., Harden, L. A. and Theologis, A. 2003. Biochemical diversity among the 1-aminocyclopropane- 1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102-49112. https://doi.org/10.1074/jbc.M308297200