DOI QR코드

DOI QR Code

Analysis of Hemolytic Microflora from the Ark Shell (Scapharca broughtonii)

패류(Scapharca broughtonii) 유래의 용혈활성 미생물 다양성 분석

  • 김동균 (국립수산과학원 전략양식연구소 생명공학과) ;
  • 남보혜 (국립수산과학원 전략양식연구소 생명공학과) ;
  • 공희정 (국립수산과학원 전략양식연구소 생명공학과) ;
  • 김우진 (국립수산과학원 전략양식연구소 생명공학과) ;
  • 김봉석 (국립수산과학원 전략양식연구소 생명공학과) ;
  • 지영주 (국립수산과학원 전략양식연구소 생명공학과) ;
  • 이상준 (국립수산과학원 전략양식연구소 생명공학과) ;
  • 정춘구 (국립수산과학원 남동해수산연구소) ;
  • 공미선 (국립수산과학원 전략양식연구소 생명공학과) ;
  • 김영옥 (국립수산과학원 전략양식연구소 생명공학과)
  • Received : 2012.03.06
  • Accepted : 2012.04.04
  • Published : 2012.05.30

Abstract

The southern coast of Korea is important for the ark shell ($Scapharca$ $broughtonii$) aquaculture, but the productivity was rapidly reduced during the previous decade by mass mortality. To overcome this economic loss, investigations only focused on environmental factors, and microbiological researches were performed insufficiently. In this study, two sites (Gangjin and Jinhae bay) were selected for their high and low rate of mortality, respectively, and the existence of microflora from underwater sediments in the bodies of $S.$ $broughtonii$ was analyzed. We screened the whole body of each sample and chose unique colonies, which exhibit alpha- and beta-hemolytic activity, for identification. The microflora in $S.$ $broughtonii$ was less variable than sediments, and restricted species were isolated. We identified 17 genera of 88 species and 16 genera of 64 species from the two bays, respectively. A major proportion was comprised of $Bacillus$ species, with the $Bacillus$ $cereus$ group being the most common species among the $Bacillus$ strains, while $Paenibacillus$, $Lynsilbacillus$, and $Vibrio$ species were the second most abundant species. At the genus level, there were no significant microbial differences between the two coastal regions. 64 species were isolated from rare site (Jinhae bay), but more species (88) with greater variety were isolated from the frequent site (Gangjin bay). Therefore, it was assumed that the cause of mass mortality lay in the difference in specie-level diversity, and conducting investigations on the diagnosis of pathogenic species by challenging tests using isolated unique species.

남해연안지역은 피조개($Scapharca$ $broughtonii$) 양식으로 매우 중요한 지역이나 최근 대량폐사로 인하여 생산량이 급격히 감소하였다. 이러한 대량폐사의 원인을 구명하기 위하여 다양한 환경요인들에 대한 연구는 수행되었으나, 미생물학적인 연구는 미비한 실정이다. 본 연구에서는 폐사율이 높은 강진만과 폐사발생이 적은 진해만 연안 피조개 양식장의 해저 퇴적물과 피조개 체내에서 분리한 미생물 균총에 대하여 분석하였다. 각각의 샘플에서 배양 가능한 모든 미생물을 분리하였으며, 분리한 미생물 중 알파 또는 베타 용혈활성을 보이는 미생물을 모두 동정하였다. 피조개 체내에 존재하는 용혈미생물의 균총은 해저 퇴적물 보다 낮은 다양성을 보였으며, 극히 한정된 종의 미생물이 존재함을 알 수 있었다. 강진만에서는 17속(genus) 88종(species)의 미생물을, 그리고 진해만에서는 16속 64종의 미생물을 분리할 수 있었다. 샘플 내에는 $Bacillus$ 속의 미생물이 가장 많이 분리 되었으며, 그 중 $Bacillus$ cereus group의 종이 가장 많고, $Paenibacillus$, $Lynsilbacillus$, 그리고 $Vibrio$ 종 등이 그 다음으로 많이 존재하였다. 속(genus) 수준에서는 두 지역의 특별한 차이를 발견할 수 없었으나, 진해만 연안에서는 64종이 발견되었고 강진만에서는 88종이 분리되어, 강진만이 좀 더 종 수준에서의 높은 다양성을 알 수 있었다. 따라서 피조개 대량폐사의 원인은 이러한 균주의 종 수준에서의 차이에서 기인하는 것 이라고 가정할 수 있었으며, 폐사지역에서 발견되는 미생물을 이용한 감염실험을 통하여 피조개의 대량폐사 원인 균을 구명 할 예정이다.

Keywords

References

  1. Beilstein, F. and Dreiseikelmann, B. 2006. Bacteriophages of freshwater Brevundimonas vesicularis isolates. Res. Microbiol. 157, 213-219. https://doi.org/10.1016/j.resmic.2005.07.005
  2. Cerritos, R., Vinuesa, P., Eguiarte, L. E., Herrera-Estrella, L., Alcaraz-Peraza, L. D., Arvizu-Gómez, J. L., Olmedo, G., Ramirez, E., Siefert, J. L. and Souza, V. 2008. Bacillus coahuilensis sp. nov., a moderately halophilic species from a desiccation lagoon in the Cuatro Ciénegas Valley in Coahuila, Mexico. Int. J. Syst. Evol. Microbiol. 58, 919-923. https://doi.org/10.1099/ijs.0.64959-0
  3. Chun, J. S., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. and Lim, Y. W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  4. Chun, Y. Y., Na, G. H. and Choi, W. J. 1991. Mass mortality of arkshell, Anadara broughtonii, SCHRENCK seeding with marine ecological characteristics. Bull. Korean Fish. Soc. 24, 70-78.
  5. Cuff, M. E., Miller, K. I., van Holde, K. E. and Hendrickson, W. A. 1998. Crystal structure of a functional unit from Octopus hemocyanin. J. Mol. Biol. 278, 855-870. https://doi.org/10.1006/jmbi.1998.1647
  6. Difco laboratories. 1998. Culture media and ingredients, dehydrated. pp. 302-303, 421-422, 11th eds., Difco laboratories. Division of Becton Dickinson and Company. Maryland. U.S.A.
  7. Donachie, S. P., Christenson, B. W., Kunkel, D. D., Malahoff, A. and Alam, M. 2002. Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand. Extremophiles 6, 419-425. https://doi.org/10.1007/s00792-002-0274-7
  8. Ettoumi, B., Raddadi, N., Borin, S., Daffonchio, D., Boudabous, A. and Cherif, A. 2009. Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments. J. Basic Microbiol. 49, S13-S23. https://doi.org/10.1002/jobm.200800306
  9. Fritz, I., Strompl, C., Nikitin, D. I., Lysenko, A. M. and Abraham, W. R. 2005. Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. Int. J. Syst. Evol. Microbiol. 55, 479-486. https://doi.org/10.1099/ijs.0.02852-0
  10. Gonzales, J. M., Brown, B. J. and Carlton, B. C. 1982. Transfer of Bacillus thuringiensis plasmid coding for gamma-endotoxin among strains of Bacillus thuringiensis and Bacillus cereus. Proc. Natl. Acad. Sci. 79, 6951-6955. https://doi.org/10.1073/pnas.79.22.6951
  11. Hoff, K. J., Tech, M., Lingner, T., Daniel, R., Morgenstern, B. and Meinicke, P. 2008. Gene prediction in metagenomic fragments: a large scale machine learning approach. BMC Bioinformatics 9, 217-230. https://doi.org/10.1186/1471-2105-9-217
  12. Ivanova, E. P., Vysotskii, M. V., Svetaschev, V. I., Nedashkovskaya, O. I., Gorshkova, N. M., Mikhailov, V. V., Yumoto, N., Shigeri, Y., Taguchi, T. and Yoshikiwa, S. 1999. Characterization of Bacillus strains of marine origin. Int. Microbiol. 2, 267-271.
  13. Kim, B. H., Min, B. H., Choi, N. J., Oh, B. S., Park, K. Y. and Min, K. S. 2008. Seasonal changes of species composition and standing crop of phytoplankton in the ark shell Scapharca broughtonii farming area of Jinhae bay. J. Aquaculture 21, 157-166.
  14. Kim, B. H., Shin, Y. K., Park, K. Y., Choi, N. J., Oh, B. S. and Min, B. H. 2008. Growth and survival of the spat of arkshell, Scapharca broughtonii in intermediate culture with different shape of protective net and type of preventive net of spat loss. Korean J. Malacol. 24, 131-136.
  15. Kim, B. K., Park, Y. D., Oh, H. M. and Chun, J. 1993. Identification and characterization of metagenomic fragments from tidal flat sediment. J. Microbiol. 47, 402-410.
  16. Koh, B. H., Lee, W. D., Ann, S. K., Kim, J. H. and Lee, M. S. 1997. Effect of storage temperature on the survival of Vibrio mimicus K-1 in seawater and arkshell. J. Korean Fish. Soc. 30, 277-281.
  17. Manns, J. M., Mosser, D. M. and Buckley, H. R. 1994. Production of a Hemolytic Factor by Candida albicans. Infect. Immun. 62, 5154-5165.
  18. Olafsen, J. A., Mikkelsen, H. V., Giaever, H. M. and Hansen, G. H. 1993. Indigenous bacteria in hemolymph and tissues of marine bivalves at low temperatures. Appl. Environ. Microbiol. 59, 1848-1854.
  19. Palleroni, N. J. 1997. Prokaryotic diversity and the importance of culturing. Antomie van Leeuwenhoek. 72, 3-19. https://doi.org/10.1023/A:1000394109961
  20. Park, M. S., Lim, H. J. and Kim, P. J. 1998. Effect of environmental factors on the growth, glycogen and hemoglobin content of cultured arkshell, Scapharca broughtonii. J. Korean Fish. Soc. 31, 176-185.
  21. Priest, F. G., Goodfellow, M. and Todd, C. 1988. A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134, 1847-1882.
  22. Sawabe, T., Fujimura, Y., Niwa, K. and Aono, H. 2007. Vibrio comitans sp. nov., Vibrio rarus sp. nov. and Vibrio inusitatus sp. nov., from the gut of the abalones Haliotis discus discus, H. gigantea, H. madaka and H. rufescens. Int. J. Syst. Evol. Microbiol. 57, 916-922. https://doi.org/10.1099/ijs.0.64789-0
  23. Schmidt, T. M., DeLong, E. F. and Pace, N. R. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteol. 173, 4371-4378.
  24. Shin, Y. K., Kim, B. H., Choi, N. J., Jung, C. G. and Park, M. W. 2008. Influence of temperature, salinity and hypoxia on survival and metabolic rate in the arkshell, Scapharca broughtonii. Korean J. Malacol. 24, 59-65.
  25. Siefert, J. L., Larios-Sanz, M., Nakamura, L. K., Slepecky, R. A., Paul, J. H., Moore, E. R., Fox, G. E. and Jurtshuk, J. P. 2000. Phylogeny of marine Bacillus isolates from the Gulf of Mexico. Curr. Microbiol. 41, 84-88. https://doi.org/10.1007/s002840010098
  26. Sorokin, V. A., Gelfand, M. S. and Artamonova, I. I. 2010. Evolutionary dynamics of clustered irregularly interspaced short palindromic repeat systems in the ocean metagenome. Appl. Environ. Microbiol. 76, 2136-2144. https://doi.org/10.1128/AEM.01985-09
  27. Stuart, P. D., Shaobin, H., Todd, S. G., Alexander, M. and Maqsudul, A. 2003. Idiomarina loihiensis sp. nov., a halophilic c-Proteobacterium from the Lo'ihi submarine volcano, Hawai'i. Int. J. Syst. Evol. Microbiol. 53, 1873-1879. https://doi.org/10.1099/ijs.0.02701-0
  28. Suzuki, M. T., Rappé, M. S., Haimberger, Z. W., Winfield, H., Adair, N., Ströbel, J. and Giovannoni, S. J. 1997. Bacterial diversity among small-subunit rRNA gene cloned and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63, 983-989.
  29. Topham, R., Tesh, S., Westcott, A., Cole, G., Mercatante, D., Kaufman, G. and Bonaventura, C. 1999. Disulfide bond reduction: A powerful, chemical probe for the study of structure-function relationships in the hemocyanins. Arch. Biochem. Biophys. 369, 261-266. https://doi.org/10.1006/abbi.1999.1367
  30. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173, 697-703.
  31. Weon, H. Y., Kim, B. Y., Son, J. A., Jang, H. B., Hong, S. K., Go, S. J. and Kwon, S. W. 2008. Massilia aerilata sp. nov., isolated from an air sample. Int. J. Syst. Evol. Microbiol. 58, 1422-1425. https://doi.org/10.1099/ijs.0.65419-0
  32. Weon, H. Y., Yoo, S. H, Kim, S. J., Kim, Y. S., Anandham, R and Kwon, S. W. 2010. Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples. Int. J. Syst. Evol. Microbiol. 8, 1938-1943.
  33. Woo, P. C., Ng, K. H., Lau, S. K., Yip, K. T., Fung, A. M., Leung, K. W., Tam, D. M., Que, T. L. and Yuen, K. Y. 2003. Usefulness of the MicroSeq 500 16S ribosomal DNA-based significant bacterial isolates with ambiguous biochemical profiles. J. Clin. Microbiol. 41, 1996-2001. https://doi.org/10.1128/JCM.41.5.1996-2001.2003

Cited by

  1. Analysis of diversity of hemolytic microbiome from aquafarm of arkshell, Scapharca broughtonii vol.26, pp.3, 2013, https://doi.org/10.7847/jfp.2013.26.3.193
  2. Antibacterial Activity of Bacteria Isolated from Rocks on the Seashore vol.48, pp.6, 2015, https://doi.org/10.5657/KFAS.2015.0904
  3. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection vol.11, pp.4, 2016, https://doi.org/10.1371/journal.pone.0153474