DOI QR코드

DOI QR Code

열처리로 제조된 In2Se3 박막의 구조 및 광학적 특성 연구

Investigation of Structural and Optical Characteristics of In2Se3 Thin Films Fabricated by Thermal Annealing

  • 박재형 (한국광기술원 광에너지연구센터) ;
  • 김대영 (한국광기술원 광에너지연구센터) ;
  • 박광훈 (한국광기술원 광에너지연구센터) ;
  • 한명수 (한국광기술원 광에너지연구센터) ;
  • 김효진 (한국광기술원 광에너지연구센터) ;
  • 신재철 (한국광기술원 광에너지연구센터) ;
  • 하준석 (전남대학교 신화학소재공학과) ;
  • 김광복 (금호전기프론티어연구센터) ;
  • 고항주 (한국광기술원 광에너지연구센터)
  • Park, Jae-Hyoug (Photovoltaic and Optoelectronic Device Center, Korea Photonics Technology Institute) ;
  • Kim, Dae-Young (Photovoltaic and Optoelectronic Device Center, Korea Photonics Technology Institute) ;
  • Park, Gwang-Hun (Photovoltaic and Optoelectronic Device Center, Korea Photonics Technology Institute) ;
  • Han, Myung-Soo (Photovoltaic and Optoelectronic Device Center, Korea Photonics Technology Institute) ;
  • Kim, Hyo-Jin (Photovoltaic and Optoelectronic Device Center, Korea Photonics Technology Institute) ;
  • Shin, Jae-Cheol (Photovoltaic and Optoelectronic Device Center, Korea Photonics Technology Institute) ;
  • Ha, Jun-Seok (Department of Advenced Chemicals & Engineering, Chonnam University) ;
  • Kim, Kwang-Bok (Frontier Research Center, Kumho Electric) ;
  • Ko, Hang-Ju (Photovoltaic and Optoelectronic Device Center, Korea Photonics Technology Institute)
  • 투고 : 2012.02.09
  • 심사 : 2012.05.15
  • 발행 : 2012.05.31

초록

열처리 공정으로 제조한 $In_2Se_3$ 박막의 구조 및 광학적 물성을 조사하여 보고한다. 기판위에 스퍼터링 방법으로 인듐(In: indium)을 증착하고 셀레늄 분위기에서 열처리 온도를 변화시키며 In-Se 박막을 제조하였다. 열처리 온도가 증가함에 따라 $In_2Se_3$ 박막의 형성과 상의 변화를 관찰 할 수 있었다. 낮은 열처리 온도(${\leq}150^{\circ}C$)에서는 In의 뭉침 현상을 관찰할 수 있었고 열처리 온도가 $250^{\circ}C$ 부터 $In_2Se_3$ 박막이 형성되며 $350^{\circ}C$ 에서 ${\gamma}-In_2Se_3$ 상이 형성됨을 알 수 있었다. 열처리 온도가 $400^{\circ}C$로 증가면 wurtzite 구조의 고품질 ${\gamma}-In_2Se_3$ 박막을 얻을 수 있었다. 열처리 온도가 증가함에 따라 $In_2Se_3$ 박막의 밴드갭이 증가함을 알 수 있었고, 열처리 온도 $400^{\circ}C$에서 제조된 ${\gamma}-In_2Se_3$ 결정질 박막의 밴드갭이 1.796eV임을 알았다.

We report investigation of structural and optical characteristics of $In_2Se_3$ thin films fabricated by thermal annealing process. Indium (In) is deposited on substrates by sputtering methods and $In_2Se_3$ thin films are fabricated by thermal annealing it with selenium vapor. The annealing temperature was changed from $150^{\circ}C$ to $400^{\circ}C$. We observe formation and phase changes of $In_2Se_3$ thin films with increase of annealing temperature. Conglomeration of In is observed at low annealing temperature (${\leq}150^{\circ}C$). $In_2Se_3$ phases are started to form at $200^{\circ}C$ and ${\gamma}-In_2Se_3$ phase form at $350^{\circ}C$. High-quality ${\gamma}-In_2Se_3$ thin film with wurtzite structure is obtained at $400^{\circ}C$ of annealing temperature. Furthermore, we confirm that band gaps of $In_2Se_3$ thin films are increased according to increase of annealing temperature. Optical band gap of high-quality ${\gamma}-In_2Se_3$ is found to be 1.796eV.

키워드

참고문헌

  1. H. J. Gysling, A. A. Wernberg, and T. N. Blanton, Chemistry of Materials 4, 900 (1992). https://doi.org/10.1021/cm00022a028
  2. M. Emziane, S. Marsillac, J. Ouerfelli, J. Bernede, and R. Le Ny, Vacuum 48, 871 (1997). https://doi.org/10.1016/S0042-207X(97)00094-8
  3. M. Asabe, P. Chate, S. Delekar, K. Garadkar, I. Mulla, and P. Hankare, Journal of Physics and Chemistry of Solids 69, 249 (2008). https://doi.org/10.1016/j.jpcs.2007.08.070
  4. R. Sreekumar, R. Jayakrishnan, C. Sudha Kartha, K. Vijayakumar, Y. Kashibawa, and T. Abe, Solar Energy Materials and Solar Cells 90, 2908 (2006). https://doi.org/10.1016/j.solmat.2005.09.013
  5. J. Bernede, S. Marsillac, and A. Conan, Materials Chemistry and Physics 48, 5 (1997). https://doi.org/10.1016/S0254-0584(97)80068-5
  6. J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, Jpn. J. Appi. Phys. 37, 4264 (1998). https://doi.org/10.1143/JJAP.37.4264
  7. S. Sahu, Thin Solid Films 261, 98 (1995). https://doi.org/10.1016/S0040-6090(95)06519-9
  8. P. J. C. Tedenac, D. G. P. Vassilev, B. Daouchi, J. Rachidi, and G. Brun, Crystal Research and Technology 32, 605 (1997). https://doi.org/10.1002/crat.2170320417
  9. C. Julien, A. Chevy, and D. Siapkas, Physica Status Solidi A 118, 553 (1990). https://doi.org/10.1002/pssa.2211180228
  10. M. Emziane, S. Marsillac, and J. Bernede, Materials Chemistry and Physics 62, 84 (2000). https://doi.org/10.1016/S0254-0584(99)00145-5
  11. A. Kampmann, A. Abken, G. Leimkühler, J. Rechid, V. Sittinger, T. Wietler, and R. Reineke Koch, Progress in Photovoltaics, Research and Applications 7, 129 (1999). https://doi.org/10.1002/(SICI)1099-159X(199903/04)7:2<129::AID-PIP252>3.0.CO;2-R
  12. A. Likforman, P. H. Fourcroy, M. Guittard, J. Flahaut, R. Poirier, and N. Szydlo, Journal of Solid State Chemistry 33, 91 (1980).
  13. James D. Ingle and Stanley R. Crouch, Spectrochemical analysis (Prentice Hall, New Jersey, 1988).
  14. K. Kuriyama and T. Katoh, Physical Review B 37, 7140 (1988). https://doi.org/10.1103/PhysRevB.37.7140
  15. J. Kwak and S. Cho, J. Korean Vacuum Soc. 19, 224 (2010). https://doi.org/10.5757/JKVS.2010.19.3.224
  16. S. Cho and M. Kim, J. Korean Vacuum Soc. 19, 287 (2010). https://doi.org/10.5757/JKVS.2010.19.4.287