DOI QR코드

DOI QR Code

Importance of Silicon Atom in the Drug Design Process

  • Gadhe, Changdev G. (Department of Pharmacoinformatics, NIPER) ;
  • Cho, Seung Joo (Department of Bio-New Drug Development, College of Medicine, Chosun University)
  • Received : 2012.12.04
  • Accepted : 2012.12.21
  • Published : 2012.09.30

Abstract

The pharmaceutical industry has an ongoing need for new, safe medicines with genuine biomedical effects. Most of the candidate molecules are far from becomes a drug, because of their pharmacokinetic and pharmacodynamic properties. The introduction of bioisostere to improve properties of molecules and to obtain new class of compound is currently increased. Silicon substitution of carbon of existing drugs is an attractive strategy to search a new candidate with improved biological and physicochemical properties. The fundamental differences between carbon and silicon can lead to improved profile of the silicon containing candidate, and could be exploited to get further benefit in drug design process.

Keywords

References

  1. A. K. Franz and S. O. Wilson, "Organosilicon Molecules with Medicinal Applications", J. Med. Chem., DOI: 10.1021/jm3010114, 2012.
  2. M. J. Barnes, R. Conroy, D. J. Miller, J. S. Mills, J. G. Montana, P. K. Pooni, G. A. Showell, L. M. Walsh, and J. B. H. Warneck, "Trimethylsilylpyrazoles as novel inhibitors of p38 MAP kinase: A new use of silicon bioisosteres in medicinal chemistry", Bioorg. Med. Chem. Lett., Vol. 17, pp. 354-357, 2007. https://doi.org/10.1016/j.bmcl.2006.10.044
  3. S. McN. Sieburth, T. Nittoli, A. M. Mutahi, and L. Guo, "Silanediols: A new class of potent protease inhibitors", Angew. Chem. Int. Ed., Vol. 37, pp. 812-814, 1998. https://doi.org/10.1002/(SICI)1521-3773(19980403)37:6<812::AID-ANIE812>3.0.CO;2-I
  4. R. Tacke, V. I. Handmann, R. Bertermann, C. Burschka, M. Penka, and C. Seyfried, "Silaanalogues of high-affinity, selective $\sigma$ ligands of the spiro[indane- 1,4'-piperidine] type: Syntheses, structures, and pharmacological properties", Organometallics, Vol. 22, pp. 916-924, 2003. https://doi.org/10.1021/om020354u
  5. R. Tacke, T. Heinrich, R. Bertermann, C. Burschka, A. Hamacher, and M. U. Kassack, "Sila-haloperidol: A silicon analogue of the dopamine (D2) receptor antagonist haloperidol", Organometallics, Vol. 23, pp. 4468-4477, 2004. https://doi.org/10.1021/om040067l
  6. S. J. Cho, "Calculation and application of partial charges", J. Chosun Natural Sci., Vol. 3, pp. 226- 230, 2010.
  7. S. J. Cho, "Meaning and definition of partial charges", J. Chosun Natural Sci., Vol. 3, pp. 231- 236, 2010.
  8. G. Kothandan, T. Madhavan , C. G. Gadhe, and S. J. Cho, "Pseudoreceptor: concept and overview", J. Chosun Natural Sci., Vol. 3, pp. 162-167, 2010.
  9. C. G. Gadhe and S. J. Cho, "Modulation of multidrug resistance in cancer by p-glycoprotein", J. Chosun Natural Sci., Vol. 4, pp. 23-30, 2011.
  10. S. J. Cho, "Search space reduction techniques in small molecular docking", J. Chosun Natural Sci., Vol. 3, pp. 143-147, 2010.
  11. H. W. Chung and S. J. Cho, "Recent development of scoring functions on small molecular docking", J. Chosun Natural Sci., Vol. 3, pp. 49-53, 2010.
  12. G. A. Showell and J. S. Mills, "Chemistry challenges in lead optimization: Silicon isosteres in drug discovery", Drug Discov. Today, Vol. 8, pp. 551- 556, 2003. https://doi.org/10.1016/S1359-6446(03)02726-0
  13. P. K. Pooni and G. A. Showell, "Silicon switches of marketed drugs", Mini-Rev. Med. Chem., Vol. 6, pp. 1169-1177, 2006. https://doi.org/10.2174/138955706778560120
  14. A. K. Franz, "The synthesis of biologically active organosilicon small molecules", Curr. Opin. Drug Discovery Dev., Vol. 10, pp. 654-671, 2007.
  15. S. McN. Sieburth and C.-A. Chen, "Silanediol protease inhibitors: From conception to validation", Eur. J. Org. Chem., Vol. 2006, pp. 311-322, 2006. https://doi.org/10.1002/ejoc.200500508
  16. S. Gately and R. West, "Novel therapeutics with enhanced biological activity generated by the strategic introduction of silicon isosteres into known drug scaffolds", Drug Dev. Res., Vol. 68, pp. 156- 163, 2007. https://doi.org/10.1002/ddr.20177
  17. W. Bains and R. Tacke, "Silicon chemistry as a novel source of chemical diversity in drug design", Curr. Opin. Drug Discovery Dev., Vol. 6, pp. 526- 543, 2003.
  18. F. D. Osterholtz and E. R. Pohl, "Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: A review", J. Adhes. Sci. Technol., Vol. 6, pp. 127-149, 1992. https://doi.org/10.1163/156856192X00106
  19. J. S. Mills and G. A. Showell, "Exploitation of silicon medicinal chemistry in drug discovery", Expert Opin. Invest. Drugs, Vol. 13, pp. 1149-1157, 2004. https://doi.org/10.1517/13543784.13.9.1149
  20. F. T. Chiu, Y. H. Chang, G. Ozkan, G. Zon, K. C. Fichter, and L. R. Phillips, "Synthesis, hydrolytic reactivity, and anticancer evaluation of N- and O-triorganosilylated compounds as new types of potential prodrugs", J. Pharm. Sci., Vol. 71, pp. 542-551, 1982. https://doi.org/10.1002/jps.2600710517
  21. T. Johansson, L. Weidolf, F. Popp, R. Tacke, and U. Jurva, "In vitro metabolism of haloperidol and silahaloperidol: New metabolic pathways resulting from carbon/silicon exchange", Drug Metab. Dispos., Vol. 38, pp. 73-83, 2010. https://doi.org/10.1124/dmd.109.028449
  22. M. C. Parrott, M. Finniss, J. C. Luft, A. Pandya, A. Gullapalli, M. E. Napier, and J. M. DeSimone, "Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles", J. Am. Chem. Soc., Vol. 134, pp. 7978-7982, 2012. https://doi.org/10.1021/ja301710z
  23. J. O. Daiss, C. Burschka, J. S. Mills, J. G. Montana, G. A. Showell, I. Fleming, C. Gaudon, D. Ivanova, H. Gronemeyer, and R. Tacke, "Synthesis, crystal structure analysis, and pharmacological characterization of disila-bexarotene, a disila-analogue of the RXR-selective retinoid agonist bexarotene", Organometallics, Vol. 24, pp. 3192-3199, 2005. https://doi.org/10.1021/om040143k
  24. J. O. Daiss, C. Burschka, J. S. Mills, J. G. Montana, G. A. Showell, J. B. H. Warneck, and R. Tacke, "Sila-venlafaxine, a sila-analogue of the serotonin/ noradrenaline reuptake inhibitor venlafaxine: Synthesis, crystal structure analysis, and pharmacological characterization", Organometallics, Vol. 25, pp. 1188-1198, 2006. https://doi.org/10.1021/om058051y
  25. M. Chang, S.-R. Park, J. Kim, M. Jang, J. H. Park, J. E. Park, H.-G. Park, Y.-G. Suh, Y. S. Jeong, Y.- H. Park, and H.-D. Kim, "Silicon switch approach in TRPV1 antagonist MK-056and its analogues", Bioorg. Med. Chem., Vol. 18, pp. 111-116, 2010. https://doi.org/10.1016/j.bmc.2009.11.014
  26. J. O. Daiss, C. Burschka, J. S. Mills, J. G. Montana, G. A. Showell, J. B. H. Warneck, and R. Tacke, "Sila-venlafaxine, a sila-analogue of the serotonin/ noradrenaline reuptake inhibitor venlafaxine: Synthesis, crystal structure analysis, and pharmacological characterization", Organometallics, Vol. 25, pp. 1188-1198, 2006. https://doi.org/10.1021/om058051y
  27. M. Blunder, N. Hurkes, S. Spirk, M. List, and Pietschnig, R. "Silanetriols as in vitro inhibitors for AChE", Bioorg. Med. Chem. Lett., Vol. 21, pp. 363- 365, 2011. https://doi.org/10.1016/j.bmcl.2010.10.139
  28. Y.-M. Kim, S. Farrah, and R. H. Baney, "Structureantimicrobial activity relationship for silanols, a new class of disinfectants, compared with alcohols and phenols", Int. J. Antimicrob. Agents, Vol. 29, pp. 217-222, 2007. https://doi.org/10.1016/j.ijantimicag.2006.08.036

Cited by

  1. Ligand-Based CoMFA Study on Pyridylpyrazolopyridine Derivatives as PKCθ Kinase Inhibitors vol.7, pp.4, 2014, https://doi.org/10.13160/ricns.2014.7.4.253
  2. 3D-QSAR Study on Imidazopyridazines Derivatives as Potent Pim-1 Kinase Inhibitors using Region-Focused CoMFA vol.10, pp.2, 2012, https://doi.org/10.13160/ricns.2017.10.2.95
  3. Synthesis and structural features of N-[(2-(trimethylsilyl)oxy)phenyl]-arylsulfonamides vol.1198, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2019.07.029
  4. In Water: Green Chemical Approach of 4-Iodo-3-(Trimethylsilyl)-1H-Pyrano[4,3-b]Quinolines through 1,3-Diiodo-5,5-Dimethylhydantoin (DIH) Mediated Regioselective Electrophilic Cyclisation of O-Alkynyl vol.12, pp.9, 2012, https://doi.org/10.1007/s12633-019-00304-4