DOI QR코드

DOI QR Code

A Review on Metabolism and Cancer in Relation with Circadian Clock Connection

  • Merlin Jayalal, L.P. (Department of Biochemistry, Bharathidasan college of Arts and Science)
  • Received : 2012.08.13
  • Accepted : 2012.09.25
  • Published : 2012.09.30

Abstract

Circadian rhythms govern a remarkable variety of metabolic and physiological functions. Accumulating epidemiological and genetic evidence indicates that the disruption of circadian rhythms might be directly linked to cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of the cell cycle, and alterations in clock function could lead to aberrant cellular proliferation. In addition, connections between the circadian clock and cellular metabolism have been identified that are regulated by chromatin remodelling. This suggests that abnormal metabolism in cancer could also be a consequence of a disrupted circadian clock. Therefore, a comprehensive understanding of the molecular links that connect the circadian clock to the cell cycle and metabolism could provide therapeutic benefit against certain human neoplasias.

Keywords

References

  1. A. Compagni and G. Christofori, "Recent advances in research on multistage tumorigenesis", Br. J. Cancer, Vol. 83, pp. 1-5, 2000. https://doi.org/10.1054/bjoc.2000.1309
  2. O. Warburg, "On the origin of cancer cells", Science, Vol. 123, pp. 309-314, 1956. https://doi.org/10.1126/science.123.3191.309
  3. R. G. Jones and C. B. Thompson, "Tumor suppressors and cell metabolism: a recipe for cancer growth", Genes Dev, Vol. 23, pp. 537-548, 2009. https://doi.org/10.1101/gad.1756509
  4. S. Sahar and P. Sassone-Crosi, "Circadian clock and breast cancer: a molecular link", Cell Cycle, Vol. 6, pp. 1329-1331, 2007. https://doi.org/10.4161/cc.6.11.4295
  5. T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimoda, H. Okamura, "Control mechanism of the circadian clock for timing of cell division in vivo", Science, Vol. 302, pp. 255-259, 2003. https://doi.org/10.1126/science.1086271
  6. C. B. Green, J. S. Takahashi, and J. Bass, "The meter of metabolism", Cell, Vol. 134, pp. 728-742, 2008. https://doi.org/10.1016/j.cell.2008.08.022
  7. U. Schibler and P. Sassone-Corsi, "A web of circadian pacemakers", Cell, Vol. 111, pp. 919-922, 2002. https://doi.org/10.1016/S0092-8674(02)01225-4
  8. M. Merrow, K. Spoelstra, and T. Roenneberg, "The circadian cycle: daily rhythms from behaviour to genes", EMBO Rep, Vol. 6, pp. 930-935, 2005. https://doi.org/10.1038/sj.embor.7400541
  9. R. G. Stevens, "Circadian disruption and breast cancer: from melatonin to clock genes", Epidemiology, Vol. 16, pp. 254-258, 2005. https://doi.org/10.1097/01.ede.0000152525.21924.54
  10. E. S. Schernhammer, F. Laden, F. E. Speizer, W. C. Willett, D. J. Hunter, I. Kawachi, and G, A. Colditz, "Rotating night shifts and risk of breast cancer in women participating in the nurses' health study", J. Natl. Cancer Inst., Vol. 93, pp. 1563-1568, 2001. https://doi.org/10.1093/jnci/93.20.1563
  11. J. Hansen, "Increased breast cancer risk among women who work predominantly at night", Epidemiology, Vol. 12, pp. 74-77, 2001. https://doi.org/10.1097/00001648-200101000-00013
  12. E. S. Schernhammer, F. Berrino, V. Krogh, G. Secreto, A. Micheli, E. Venturelli, S. Sieri, C. T. Sempos, A. Cavalleri, H. J. Schünemann, S. Strano, and P. Muti, "Urinary 6-sulfatoxymelatonin levels and risk of breast cancer in postmenopausal women", J. Natl. Cancer Inst., Vol. 100, pp. 898- 905, 2008. https://doi.org/10.1093/jnci/djn171
  13. R. C. Travis, D. S. Allen, I. S. Fentiman, and T. J. Key, "Melatonin and breast cancer: a prospective study", J. Natl. Cancer Inst., Vol. 96, pp. 475-482, 2004. https://doi.org/10.1093/jnci/djh077
  14. C. G. Lis, J. F. Grutsch, P. Wood, M. You, I. Rich, and W. J. M. Hrushesky, "Circadian timing in cancer treatment: the biological foundation for an integrative approach", Integr. Cancer Ther., Vol. 2, pp. 105-111, 2003. https://doi.org/10.1177/1534735403002002002
  15. F. Levi, C. Focand, A. Karabouéa, V. de la Valettea, D. Focan-Henrardd, B. Baronb, F. Kreutzd, S. Giacchettia, "Implications of circadian clocks for the rhythmic delivery of cancer therapeutics", Adv. Drug Deliv. Rev., Vol. 59, pp. 1015-1035, 2007. https://doi.org/10.1016/j.addr.2006.11.001
  16. M. Kobayashi, P. A. Wood, and W. J. Hrushesky, "Circadian chemotherapy for gynecological and genitourinary cancers", Chronobiol. Int., Vol. 19, pp. 237-251, 2002. https://doi.org/10.1081/CBI-120002600
  17. N. R. Glossop and P. E. Hardin, "Central and peripheral circadian oscillator mechanisms in flies and mammals", J. Cell Sci., Vol. 115, pp. 3369- 3377, 2002.
  18. F. Damiola, N. L. Minh, N. Preitner, B. Kornmann, F. Fleury-Olela, and U. Schibler, "Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus", Genes Dev., Vol. 14, pp. 2950-2961, 2000. https://doi.org/10.1101/gad.183500
  19. H. Tsubouchi, A. Kamibeppu, K. Fujisaki, J. Nagahama, and S. Hashimoto, "Hepatic gluconeogenic key enzymes in patients with hepatic cancer", Gastroenterol. Jpn., Vol. 15, pp. 564-569, 1980.
  20. M. W. Young and S. A. Kay, "Time zones: a comparative genetics of circadian clocks", Nature Rev. Genet., Vol. 2, pp. 702-715, 2001. https://doi.org/10.1038/35088576
  21. S. Panda, S. Panda, M. P. Antoch, B. H. Miller, A. I. Su, A. B. Schook, M. Straume, P. G. Schultz, S. A. Kay, J. S. Takahashi, J. B. Hogenesch, "Coordinated transcription of key pathways in the mouse by the circadian clock", Cell, Vol. 109, pp. 307-320, 2002. https://doi.org/10.1016/S0092-8674(02)00722-5
  22. M. H.Hastings, A. B. Reddy, and E. S. Maywood, "A clockwork web: circadian timing in brain and periphery, in health and disease", Nature Rev. Neurosci., Vol. 4, pp. 649-661, 2003.
  23. Y. Nakahata, S. Sahar, G. Astarita, M. Kaluzova, and P . Sassone-Corsi, "Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1", Science, Vol. 324, pp. 654-657, 2009. https://doi.org/10.1126/science.1170803
  24. K. M. Ramsey, J. Yoshino, C. S. Brace, D. Abrassart, Y. Kobayashi, B. Marcheva, H.-K. Hong, J. L. Chong, E. D. Buhr, C. Lee, J. S. Takahashi, S Imai, and J. Bass, "Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis", Science, Vol. 324, pp. 651-654, 2009. https://doi.org/10.1126/science.1171641
  25. L. P. Shearman, M. J. Zylka, D. R. Weaver, L. F. Kolakowski, Jr and S. M. Reppert, "Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei", Neuron, Vol. 19, pp. 1261-1269, 1997. https://doi.org/10.1016/S0896-6273(00)80417-1
  26. U. Albrecht, Z. S. Sun, G. Eichele, and C. C. Lee, "A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light", Cell, Vol. 91, pp. 1055-1064, 1997. https://doi.org/10.1016/S0092-8674(00)80495-X
  27. A. Balsalobre, F. Damiola, and U. Schibler, "A serum shock induces circadian gene expression in mammalian tissue culture cells", Cell, Vol. 93, pp. 929-937, 1998. https://doi.org/10.1016/S0092-8674(00)81199-X
  28. M. Akashi and E. Nishida, "Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock", Genes Dev., Vol. 14, pp. 645-649, 2000.
  29. K. Sanada, T. Okano, and Y. Fukada, "Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1", J. Biol. Chem., Vol. 277, pp. 267- 271, 2002. https://doi.org/10.1074/jbc.M107850200
  30. H. S. Shim, H. Kim, J. Lee, G. H. Son, S. Cho, T. H Oh, S. H. Kang, D.-S. Seen, K. H. Lee, and K. Kim, "Rapid activation of CLOCK by $Ca^{2+}$- dependent protein kinase C mediates resetting of the mammalian circadian clock", EMBO Rep., Vol. 8, pp. 366-371, 2007. https://doi.org/10.1038/sj.embor.7400920
  31. M. Gallego and D. M. Virshup, "Post-translational modifications regulate the ticking of the circadian clock", Nature Rev. Mol. Cell Biol., Vol. 8, pp. 139- 148, 2007. https://doi.org/10.1038/nrm2106
  32. K. Kaasik and C. C. Lee, "Reciprocal regulation of haem biosynthesis and the circadian clock in mammals", Nature, Vol. 430, pp. 467-471, 2004. https://doi.org/10.1038/nature02724
  33. T. K. Sato, S. Panda1, L. J. Miraglia, T. M. Reyes, R. D. Rudic, P. McNamara, K. A. Naik, G. A. FitzGerald, S. A. Kay, J. B. Hogenesch, "A functional genomics strategy reveals Rora as a component of the mammalian circadian clock", Neuron, Vol. 43, pp. 527-537, 2004. https://doi.org/10.1016/j.neuron.2004.07.018
  34. N. Preitner, F. Damiola1, L. L. Molina, J. Zakany, D. Duboule, U. Albrecht, U. Schibler, "The orphan nuclear receptor REV-ERB$\alpha$ controls circadian transcription within the positive limb of the mammalian circadian oscillator", Cell, Vol. 110, pp. 251-260, 2002. https://doi.org/10.1016/S0092-8674(02)00825-5
  35. M. Reick, J. A. Garcia, C. Dudley, and S. L. McKnight, "NPAS2: an analog of clock operative in the mammalian forebrain", Science, Vol. 293, pp. 506-509, 2001. https://doi.org/10.1126/science.1060699
  36. J. P. DeBruyne, D. R. Weaver, and S. M. Reppert, "CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock", Nature Neurosci., Vol. 10, pp. 543-545, 2007. https://doi.org/10.1038/nn1884
  37. J. P. DeBruyne, D. R. Weaver, and S. M. Reppert, "Peripheral circadian oscillators require CLOCK", Curr. Biol., Vol. 17, pp. 538-539, 2007. https://doi.org/10.1016/j.cub.2007.05.067
  38. F. W. Turek, C. Joshu, A. Kohsaka, E. Lin, G. Ivanova, E. McDearmon, A. Laposky, S. Losee- Olson, A. Easton, D. R. Jensen, R. H. Eckel, J. S. Takahashi, J. Bass, "Obesity and metabolic syndrome in circadian Clock mutant mice", Science, Vol. 308, pp. 1043-1045, 2005. https://doi.org/10.1126/science.1108750
  39. R. V. Kondratov, A. A. Kondratova, C. Lee, V. Y. Gorbacheva, M. V. Chernov, and M. P. Antoch, "Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES", Cell Cycle., Vol. 5, pp. 890-895, 2006. https://doi.org/10.4161/cc.5.8.2684
  40. H. Dardente, E. E. Fortier, V. Martineau, and N. Cermakian, "Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression", Biochem. J., Vol. 402, pp. 525-536, 2007. https://doi.org/10.1042/BJ20060827
  41. T. Shirogane, J. Jin, X. L. Ang, and J. W. Harper, "SCF$\beta$-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein", J. Biol. Chem., Vol. 280, pp. 26863-26872, 2005. https://doi.org/10.1074/jbc.M502862200
  42. M. Akashi, Y. Tsuchiya, T. Yoshino, and E. Nishida, "Control of intracellular dynamics of mammalian period proteins by casein kinase $I{\varepsilon}$ ($CKI{\varepsilon}$) and $CKI{\delta}$ in cultured cells", Mol. Cell Biol., Vol. 22, pp. 1693-1703, 2002. https://doi.org/10.1128/MCB.22.6.1693-1703.2002
  43. L. Busino, F. Bassermann, A. Maiolica, C. Lee, P. M. Nolan, S. I. H. Godinho, G. F. Draetta, M. Pagano, "SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins", Science, Vol. 316, pp. 900-904, 2007. https://doi.org/10.1126/science.1141194
  44. S. I. H. Godinho, E. S. Maywood, L. Shaw, V. Tucci, A. R. Barnard, L. Busino, M. Pagano, R. Kendall, M. M. Quwailid, M. R. Romero, J. O'Neill, J. E. Chesham, D. Brooker, Z. Lalanne, M. H. Hastings, P. M. Nolan, "The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period", Science, Vol. 316, pp. 897-900, 2007. https://doi.org/10.1126/science.1141138
  45. S. M. Siepka, S.-H. Yoo, J. Park, W. Song, V. Kumar, Y. Hu, C. Lee, J. S. Takahashi, "Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression", Cell, Vol. 129, pp. 1011-1023, 2007. https://doi.org/10.1016/j.cell.2007.04.030
  46. L. Cardone, J Hirayama, F. Giordano, T. Tamaru, J. J. Palvimo, P. Sassone-Corsi, "Circadian clock control by SUMOylation of BMAL1", Science, Vol. 309, pp. 1390-1394, 2005. https://doi.org/10.1126/science.1110689
  47. J. Hirayama, S. Sahar, B. Grimaldi, T. Tamaru, K. Takamatsu, Y. Nakahata, and P. Sassone-Corsi, "CLOCK-mediated acetylation of BMAL1 controls circadian function", Nature, Vol. 450, pp. 1086-1090, 2007. https://doi.org/10.1038/nature06394
  48. J. P. Etchegaray, C. Lee, P. A. Wade, and S. M. Reppert, "Rhythmic histone acetylation underlies transcription in the mammalian circadian clock", Nature, Vol. 421, pp. 177-182, 2003. https://doi.org/10.1038/nature01314
  49. J. A. Ripperger and U. Schibler, "Rhythmic CLOCKBMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions" Nature Genet., Vol. 38, pp. 369-374, 2006. https://doi.org/10.1038/ng1738
  50. M. Doi, J. Hirayama, and P. Sassone-Corsi, "Circadian regulator CLOCK is a histone acetyltransferase", Cell, Vol. 125, pp. 497-508, 2006. https://doi.org/10.1016/j.cell.2006.03.033
  51. Y. Nakahata, M. Kaluzova, B. Grimaldi, S. Sahar, J. Hirayama, D. Chen, L. P. Guarente, P. Sassone Corsi, "The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control", Cell, Vol. 134, pp. 329-340, 2008. https://doi.org/10.1016/j.cell.2008.07.002
  52. G. Asher, D. Gatfield, M. Stratmann, H. Reinke, C. Dibner, F. Kreppel, R. Mostoslavsky, F. W. Alt, U. Schibler, "SIRT1 regulates circadian clock gene expression through PER2 deacetylation", Cell, Vol. 134, pp. 317-328, 2008. https://doi.org/10.1016/j.cell.2008.06.050
  53. S. Y. Chen, S.-T. Chen, K.-B. Choo, M.-F. Hou, K.- T. Yeh, S.-J. Kuo, and J.-G. Chang, "Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers", Carcinogenesis, Vol. 26, pp. 1241-246, 2005. https://doi.org/10.1093/carcin/bgi075
  54. A. E. Hoffman, T. Zheng, Y. Ba, and Y. Zhu, "The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response", Mol. Cancer Res., Vol. 6, pp. 1461-1468, 2008. https://doi.org/10.1158/1541-7786.MCR-07-2094
  55. S. Gery, N. Komatsu, L. Baldjyan, A. Yu, D. Koo, H. P. Koeffler, "The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells", Mol. Cell, Vol. 22, pp. 375-382, 2006. https://doi.org/10.1016/j.molcel.2006.03.038
  56. L. Fu, H. Pelicano, J. Liu, P. Huang, and C. Lee, "The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo", Cell, Vol. 111, pp. 41-50, 2002. https://doi.org/10.1016/S0092-8674(02)00961-3
  57. S. Gery, A. F. Gombart, W. S. Yi, C. Koeffler, W.- K. Hofmann, and H. P. Koeffler, "Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia", Blood, Vol.106, pp. 2827-2836, 2005. https://doi.org/10.1182/blood-2005-01-0358
  58. W. S. Yang and B. R. Stockwell, "Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest", Genome Biol., Vol. 9, pp. 92, 2008. https://doi.org/10.1186/gb-2008-9-6-r92
  59. N. Cermakian, L. Monaco, M. P. Pando, A. Dierich, and P. Sassone-Corsi, "Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene", EMBO J., Vol. 20, pp. 3967-3974, 2001. https://doi.org/10.1093/emboj/20.15.3967
  60. B. Zheng, U. Albrecht, K. Kaasik, M. Sage, W. Lu, S. Vaishnav, Q. Li, Z. S. Sun, G. Eichele, A. Bradley, C. C. Lee, "Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock", Cell, Vol. 105, pp. 683-694, 2001. https://doi.org/10.1016/S0092-8674(01)00380-4
  61. K. Bae, X. Jin, E. S. Maywood, M. H. Hastings, S. M. Reppert, and D. R. Weaver, "Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock", Neuron, Vol.30, pp. 525-536, 2001. https://doi.org/10.1016/S0896-6273(01)00302-6
  62. B. Zheng, D. W. Larkin, U. Albrecht, Z. S. Sun, M. Sage, G. Eichele, C. C. Lee, and A. Bradley, "The mPer2 gene encodes a functional component of the mammalian circadian clock", Nature, Vol. 400, pp. 169-173, 1999. https://doi.org/10.1038/22118
  63. S. Gery, R. K.Virk, K. Chumakov, A. Yu, and H. P. Koeffler, "The clock gene Per2 links the circadian system to the estrogen receptor", Oncogene, Vol. 26, pp. 7916-7920, 2007. https://doi.org/10.1038/sj.onc.1210585
  64. K. A. Green and J. S. Carroll, "Oestrogen-receptormediated transcription and the influence of co-factors and chromatin state", Nature Rev. Cancer, Vol. 7, pp. 713-722, 2007. https://doi.org/10.1038/nrc2211
  65. J. Hirayama and P. Sassone-Corsi, "Structural and functional features of transcription factors controlling the circadian clock", Curr. Opin. Genet. Dev., Vol. 15, pp. 548-556, 2005. https://doi.org/10.1016/j.gde.2005.07.003
  66. M. J. Zylka, L. P. Shearman, J. D. Levine, X. Jin, D. R. Weaver, S. M. Reppert, "Molecular analysis of mammalian timeless", Neuron, Vol. 21, pp. 1115-1122, 1998. https://doi.org/10.1016/S0896-6273(00)80628-5
  67. M. A. Gauger and A. Sancar, "Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer", Cancer Res., Vol. 65, pp. 6828-6834, 2005. https://doi.org/10.1158/0008-5472.CAN-05-1119
  68. M. P. Antoch, V. Y. Gorbacheva, O. Vykhovanets, I. A. Toshkov, R. V. Kondratov, A. A. Kondratova, C. Lee, and A. Y. Nikitin, "Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis", Cell Cycle, Vol. 7, pp. 1197-1204, 2008. https://doi.org/10.4161/cc.7.9.5886
  69. B. H. Miller, B. H. Miller, E. L. McDearmon, S. Panda, K. R. Hayes, J. Zhang, J. L. Andrews, M. P. Antoch, J. R. Walker, K. A. Esser, J. B. Hogenesch, and J. S. Takahashi, "Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation", Proc. Natl. Acad. Sci, Vol. 104, pp. 3342-3347, 2007. https://doi.org/10.1073/pnas.0611724104
  70. N. Ozturk, J. H. Lee, S. Gaddameedhi, and A. Sancar, "Loss of cryptochrome reduces cancer risk in p53 mutant mice", Proc. Natl. Acad. Sci., Vol. 106, pp. 2841-2846, 2009. https://doi.org/10.1073/pnas.0813028106
  71. T. Hunt and P. Sassone-Corsi, "Riding tandem: circadian clocks and the cell cycle", Cell, Vol. 129, pp. 461-464, 2007. https://doi.org/10.1016/j.cell.2007.04.015
  72. L. Canaple, T. Kakizawa, and V. Laudet, "The days and nights of cancer cells", Cancer Res., Vol. 63, pp. 7545-7552, 2003.
  73. L. Rensing and K. Goedeke, "Circadian rhythm and cell cycle: possible entraining mechanisms", Chronobiologia, Vol. 3, pp. 853-865, 1976.
  74. J. Hirayama, L. Cardone, M. Doi, and P. Sassone- Corsi, "Common pathways in circadian and cell cycle clocks: light-dependent activation of Fos/AP- 1 in zebrafish controls CRY-1a and WEE-1", Proc. Natl. Acad. Sci., Vol. 102, pp. 10194-10199, 2005. https://doi.org/10.1073/pnas.0502610102
  75. P. G. Roy and A. M. Thompson, "Cyclin D1 and breast cancer", Breast, Vol. 15, pp. 718-727, 2006. https://doi.org/10.1016/j.breast.2006.02.005
  76. T. H. Kang, J. T. Reardon, M. Kemp, and A. Sancar, "Circadian oscillation of nucleotide excision repair in mammalian brain", Proc. Natl. Acad. Sci., Vol. 106, pp. 2864-2867, 2009. https://doi.org/10.1073/pnas.0812638106
  77. J. W. Barnes, S. A. Tischkau, J. A. Barnes, J. W. Mitchell, P. W. Burgoon, J. R. Hickok, and M. U. Gillette, "Requirement of mammalian Timeless for circadian rhythmicity", Science, Vol. 302, pp. 439-442, 2003. https://doi.org/10.1126/science.1086593
  78. K. Unsal-Kacmaz, T. E. Mullen, W. K. Kaufmann, and A. Sancar, "Coupling of human circadian and cell cycles by the timeless protein", Mol. Cell Biol., Vol. 25, pp. 3109-3116, 2005. https://doi.org/10.1128/MCB.25.8.3109-3116.2005
  79. M. Oklejewicz, E. Destici, F. Tamanini, R. A. Hut, R. Janssens, G. T.J. van der Horst, "Phase resetting of the mammalian circadian clock by DNA damage", Curr. Biol., 18, pp. 286-291, 2008. https://doi.org/10.1016/j.cub.2008.01.047
  80. J. J. Gamsby, J. J. Loros, and J. C. Dunlap, "A phylogenetically conserved DNA damage response resets the circadian clock", J. Biol. Rhythms, Vol. 24, pp. 193-202, 2009. https://doi.org/10.1177/0748730409334748
  81. A. M. Pregueiro, Q. Liu, C. L. Baker, J. C. Dunlap, and J. J. Loros, "The Neurospora checkpoint kinase 2: a regulatory link between the circadian and cell cycles", Science, Vol. 313, pp. 644-649, 2006. https://doi.org/10.1126/science.1121716
  82. R. R. Klevecz, J. Bolen, G. Forrest, and D. B. Murray, "A genomewide oscillation in transcription gates DNA replication and cell cycle", Proc. Natl. Acad. Sci., Vol. 101, pp. 1200-1205, 2004. https://doi.org/10.1073/pnas.0306490101
  83. Z. Chen, E. A. Odstrcil, B. P. Tu, and S. L. McKnight, "Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity", Science, Vol. 316, pp. 1916-1919, 2007. https://doi.org/10.1126/science.1140958
  84. K. Eckel-Mahan, and P. Sassone-Corsi, "Metabolism control by the circadian clock and vice versa", Nature Struct. Mol. Biol., Vol. 16, pp. 462-467, 2009. https://doi.org/10.1038/nsmb.1595
  85. F. A. Scheer, M. F. Hilton, C. S. Mantzoros, and S. A. Shea, "Adverse metabolic and cardiovascular consequences of circadian misalignment", Proc. Natl. Acad. Sci., Vol. 106, pp. 4453-4458, 2009. https://doi.org/10.1073/pnas.0808180106
  86. C. B. Green, N. Douris, S. Kojima , C. A. Strayer, J. Fogerty, D. Lourim, S. R. Keller, and J. C. Besharse, "Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity", Proc. Natl. Acad. Sci., Vol. 104, pp. 9888-9893, 2007. https://doi.org/10.1073/pnas.0702448104
  87. X. Yang, M. Downes, R. T. Yu, A. L. Bookout, W. He, M. Straume, D. J. Mangelsdorf, R. M. Evans, "Nuclear receptor expression links the circadian clock to metabolism", Cell, Vol. 126, pp. 801-810, 2006. https://doi.org/10.1016/j.cell.2006.06.050
  88. C. Liu, S. Li, T. Liu, J. Borjigin, and J. D. Lin, "Transcriptional coactivator PGC-$1\alpha$ integrates the mammalian clock and energy metabolism", Nature, Vol. 447, pp. 477-481, 2007. https://doi.org/10.1038/nature05767
  89. K. Oishi, K. Miyazakia, K. Kadota, R. Kikuno, T. Nagase, G.Atsumi, N. Ohkura, T. Azama, M. Mesaki, S. Yukimasa, H. Kobayashi, C. Iitaka, T. Umehara, M. Horikoshi, T. Kudo, Y. Shimizu, M. Yano, M. Monden, K. Machida, J. Matsuda, S. Horie, T. Todo, and N. Ishida, "Genome-wide expression analysis of mouse liver reveals CLOCKregulated circadian output genes", J. Biol. Chem., Vol. 278, pp. 41519-41527, 2003. https://doi.org/10.1074/jbc.M304564200
  90. T. Alenghat, K. Meyers, S. E. Mullican, K. Leitner, A. Adeniji-Adele, J. Avila, M. Buan, R. S. Ahima, K. H. Kaestner, and M. A. Lazar, "Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology", Nature, 456, pp. 997-1000, 2008. https://doi.org/10.1038/nature07541
  91. S. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, "Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase", Nature, Vol. 403, pp. 795-800, 2000. https://doi.org/10.1038/35001622
  92. C. L. Brooks and W. Gu, "How does SIRT1 affect metabolism, senescence and cancer?", Nature Rev. Cancer, Vol. 9, pp. 123-128, 2009. https://doi.org/10.1038/nrc2562
  93. H. Vaziri, S. K. Dessain, E. N. Eaton, S.-I. Imai, R. A. Frye, T. K. Pandita, L. Guarente, R. A. Weinberg, "hSIR2SIRT1 functions as an NADdependent p53 deacetylase", Cell, Vol. 107, pp. 149-159, 2001. https://doi.org/10.1016/S0092-8674(01)00527-X
  94. W. Y. Chen, D. H. Wang, R. W. C. Yen, J. Luo, W. Gu, S. B. Baylin, "Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNAdamage responses", Cell, 123, pp. 437-448, 2005. https://doi.org/10.1016/j.cell.2005.08.011
  95. H. Y. Cohen, S. Lavu, K. J. Bitterman, B. Hekking, T. A. Imahiyerobo, C. Miller, R. Frye, H. Ploegh, B. M. Kessler, D. A. Sinclair, "Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis", Mol. Cell, Vol. 13, pp. 627-638, 2004. https://doi.org/10.1016/S1097-2765(04)00094-2
  96. R. H. Wang, K. Sengupta, C. Li, H.-S. Kim, L. Cao, C. Xiao, S. Kim, X. Xu, Y. Zheng, B. Chilton, R. Jia, Z.-M. Zheng, E. Appella, X. W. Wang, T. Ried, and C.-X. Deng, "Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice", Cancer Cell, 14, pp. 312-323, 2008. https://doi.org/10.1016/j.ccr.2008.09.001
  97. P. Oberdoerffer, S. Michan, M. McVay, R. Mostoslavsky, J. Vann, S.-K. Park, A. Hartlerode, J. Stegmuller, A. Hafner, P. Loerch, S. M. Wright, K. D. Mills, A. Bonni, B. A. Yankner, R. Scully, T. A. Prolla, F. W. Alt, and D. A. Sinclair, "SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging", Cell, Vol. 135, pp. 907-918, 2008. https://doi.org/10.1016/j.cell.2008.10.025
  98. R. Firestein, G. Blander, S. Michan, P. Oberdoerffer, S. Ogino, J. Campbell, A. Bhimavarapu, S. Luikenhuis, R. de Cabo, C. Fuchs, W. C. Hahn, L. P. Guarente, and D. A. Sinclair, "The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth", PLoS ONE Vol. 3, pp. e2020, 2008. https://doi.org/10.1371/journal.pone.0002020
  99. B. Schwer and E. Verdin, "Conserved metabolic regulatory functions of sirtuins", Cell Metab., Vol. 7, pp. 105-112, 2008.
  100. F. Picard, M. Kurtev, N. Chung, A. Topark-Ngarm, T. Senawong, R. M. de Oliveira, M. Leid, M. W. McBurney, and L. Guarente, "Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-$\gamma$", Nature, Vol. 429, pp. 771-776, 2004. https://doi.org/10.1038/nature02583
  101. X. Li, S. Zhang, G. Blander, J. G. Tse, M. Krieger, and L. Guarente, "SIRT1 deacetylates and positively regulates the nuclear receptor LXR", Mol. Cell, Vol. 28, pp. 91-106, 2007. https://doi.org/10.1016/j.molcel.2007.07.032
  102. C. Crosio, N. Cermakian, C. D. Allis, and P. Sassone- Corsi, "Light induces chromatin modification in cells of the mammalian circadian clock", Nature Neurosci., Vol. 3, pp. 1241-1247, 2000. https://doi.org/10.1038/81767
  103. E. Borrelli, E. J. Nestler, C. D. Allis, and P. Sassone- Corsi, "Decoding the epigenetic language of neuronal plasticity", Neuron Vol. 60, pp. 961-974, 2008. https://doi.org/10.1016/j.neuron.2008.10.012
  104. U. Kolthur-Seetharam, F. Dantzer, M. W. McBurney, G. de Murcia, G. and P. Sassone-Corsi, "Control of AIF- mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage", Cell Cycle, Vol. 5, pp. 873-877, 2006. https://doi.org/10.4161/cc.5.8.2690
  105. F. Dantzer, J. C. Ame, V. Schreiber, J. Nakamura, M. J. Menissier-de, and G. de Murcia, "Poly(ADPribose) polymerase-1 activation during DNA damage and repair", Methods Enzymol., Vol. 409, pp. 493-510, 2006. https://doi.org/10.1016/S0076-6879(05)09029-4
  106. J. B.Pillai, A. Isbatan, S. Imai, and M. P. Gupta, "Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2$\alpha$ deacetylase activity", J. Biol. Chem., Vol. 280, pp. 43121-43130, 2005. https://doi.org/10.1074/jbc.M506162200
  107. S. A. Martin, C. J. Lord, and A. Ashworth, "DNA repair deficiency as a therapeutic target in cancer", Curr. Opin. Genet. Dev., Vol. 18, pp. 80-86, 2008. https://doi.org/10.1016/j.gde.2008.01.016
  108. A. Garten, S. Petzold, A. Korner, S. I. Imai, and W. Kiess, "Nampt: linking NAD biology, metabolism and cancer", Trends Endocrinol. Metab., Vol. 20, pp. 130-138, 2008.
  109. M. Hasmann and T. Schemainda, "FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyl transferase, represents a novel mechanism for induction of tumor cell apoptosis", Cancer Res., Vol. 63, pp. 7436-7442, 2003.
  110. M. F.Demierre, P. D. Higgins, S. B. Gruber, E. Hawk, and S. M. Lippman, "Statins and cancer prevention", Nature Rev. Cancer, Vol. 5, pp. 930-942, 2005. https://doi.org/10.1038/nrc1751
  111. M. S. Brown, J. L. Goldstein, and J. M. Dietschy, "Active and inactive forms of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the liver of the rat. Comparison with the rate of cholesterol synthesis in different physiological states", J. Biol. Chem., Vol. 254, pp. 5144-5149, 1979.
  112. R, R. Klevecz, R. M. Shymko, D. Blumenfeld, and P. S. Braly, "Circadian gating of S phase in human ovarian cancer", Cancer Res., Vol. 47, pp. 6267-6271, 1987.