References
- A. Compagni and G. Christofori, "Recent advances in research on multistage tumorigenesis", Br. J. Cancer, Vol. 83, pp. 1-5, 2000. https://doi.org/10.1054/bjoc.2000.1309
- O. Warburg, "On the origin of cancer cells", Science, Vol. 123, pp. 309-314, 1956. https://doi.org/10.1126/science.123.3191.309
- R. G. Jones and C. B. Thompson, "Tumor suppressors and cell metabolism: a recipe for cancer growth", Genes Dev, Vol. 23, pp. 537-548, 2009. https://doi.org/10.1101/gad.1756509
- S. Sahar and P. Sassone-Crosi, "Circadian clock and breast cancer: a molecular link", Cell Cycle, Vol. 6, pp. 1329-1331, 2007. https://doi.org/10.4161/cc.6.11.4295
- T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimoda, H. Okamura, "Control mechanism of the circadian clock for timing of cell division in vivo", Science, Vol. 302, pp. 255-259, 2003. https://doi.org/10.1126/science.1086271
- C. B. Green, J. S. Takahashi, and J. Bass, "The meter of metabolism", Cell, Vol. 134, pp. 728-742, 2008. https://doi.org/10.1016/j.cell.2008.08.022
- U. Schibler and P. Sassone-Corsi, "A web of circadian pacemakers", Cell, Vol. 111, pp. 919-922, 2002. https://doi.org/10.1016/S0092-8674(02)01225-4
- M. Merrow, K. Spoelstra, and T. Roenneberg, "The circadian cycle: daily rhythms from behaviour to genes", EMBO Rep, Vol. 6, pp. 930-935, 2005. https://doi.org/10.1038/sj.embor.7400541
- R. G. Stevens, "Circadian disruption and breast cancer: from melatonin to clock genes", Epidemiology, Vol. 16, pp. 254-258, 2005. https://doi.org/10.1097/01.ede.0000152525.21924.54
- E. S. Schernhammer, F. Laden, F. E. Speizer, W. C. Willett, D. J. Hunter, I. Kawachi, and G, A. Colditz, "Rotating night shifts and risk of breast cancer in women participating in the nurses' health study", J. Natl. Cancer Inst., Vol. 93, pp. 1563-1568, 2001. https://doi.org/10.1093/jnci/93.20.1563
- J. Hansen, "Increased breast cancer risk among women who work predominantly at night", Epidemiology, Vol. 12, pp. 74-77, 2001. https://doi.org/10.1097/00001648-200101000-00013
- E. S. Schernhammer, F. Berrino, V. Krogh, G. Secreto, A. Micheli, E. Venturelli, S. Sieri, C. T. Sempos, A. Cavalleri, H. J. Schünemann, S. Strano, and P. Muti, "Urinary 6-sulfatoxymelatonin levels and risk of breast cancer in postmenopausal women", J. Natl. Cancer Inst., Vol. 100, pp. 898- 905, 2008. https://doi.org/10.1093/jnci/djn171
- R. C. Travis, D. S. Allen, I. S. Fentiman, and T. J. Key, "Melatonin and breast cancer: a prospective study", J. Natl. Cancer Inst., Vol. 96, pp. 475-482, 2004. https://doi.org/10.1093/jnci/djh077
- C. G. Lis, J. F. Grutsch, P. Wood, M. You, I. Rich, and W. J. M. Hrushesky, "Circadian timing in cancer treatment: the biological foundation for an integrative approach", Integr. Cancer Ther., Vol. 2, pp. 105-111, 2003. https://doi.org/10.1177/1534735403002002002
- F. Levi, C. Focand, A. Karabouéa, V. de la Valettea, D. Focan-Henrardd, B. Baronb, F. Kreutzd, S. Giacchettia, "Implications of circadian clocks for the rhythmic delivery of cancer therapeutics", Adv. Drug Deliv. Rev., Vol. 59, pp. 1015-1035, 2007. https://doi.org/10.1016/j.addr.2006.11.001
- M. Kobayashi, P. A. Wood, and W. J. Hrushesky, "Circadian chemotherapy for gynecological and genitourinary cancers", Chronobiol. Int., Vol. 19, pp. 237-251, 2002. https://doi.org/10.1081/CBI-120002600
- N. R. Glossop and P. E. Hardin, "Central and peripheral circadian oscillator mechanisms in flies and mammals", J. Cell Sci., Vol. 115, pp. 3369- 3377, 2002.
- F. Damiola, N. L. Minh, N. Preitner, B. Kornmann, F. Fleury-Olela, and U. Schibler, "Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus", Genes Dev., Vol. 14, pp. 2950-2961, 2000. https://doi.org/10.1101/gad.183500
- H. Tsubouchi, A. Kamibeppu, K. Fujisaki, J. Nagahama, and S. Hashimoto, "Hepatic gluconeogenic key enzymes in patients with hepatic cancer", Gastroenterol. Jpn., Vol. 15, pp. 564-569, 1980.
- M. W. Young and S. A. Kay, "Time zones: a comparative genetics of circadian clocks", Nature Rev. Genet., Vol. 2, pp. 702-715, 2001. https://doi.org/10.1038/35088576
- S. Panda, S. Panda, M. P. Antoch, B. H. Miller, A. I. Su, A. B. Schook, M. Straume, P. G. Schultz, S. A. Kay, J. S. Takahashi, J. B. Hogenesch, "Coordinated transcription of key pathways in the mouse by the circadian clock", Cell, Vol. 109, pp. 307-320, 2002. https://doi.org/10.1016/S0092-8674(02)00722-5
- M. H.Hastings, A. B. Reddy, and E. S. Maywood, "A clockwork web: circadian timing in brain and periphery, in health and disease", Nature Rev. Neurosci., Vol. 4, pp. 649-661, 2003.
- Y. Nakahata, S. Sahar, G. Astarita, M. Kaluzova, and P . Sassone-Corsi, "Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1", Science, Vol. 324, pp. 654-657, 2009. https://doi.org/10.1126/science.1170803
- K. M. Ramsey, J. Yoshino, C. S. Brace, D. Abrassart, Y. Kobayashi, B. Marcheva, H.-K. Hong, J. L. Chong, E. D. Buhr, C. Lee, J. S. Takahashi, S Imai, and J. Bass, "Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis", Science, Vol. 324, pp. 651-654, 2009. https://doi.org/10.1126/science.1171641
- L. P. Shearman, M. J. Zylka, D. R. Weaver, L. F. Kolakowski, Jr and S. M. Reppert, "Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei", Neuron, Vol. 19, pp. 1261-1269, 1997. https://doi.org/10.1016/S0896-6273(00)80417-1
- U. Albrecht, Z. S. Sun, G. Eichele, and C. C. Lee, "A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light", Cell, Vol. 91, pp. 1055-1064, 1997. https://doi.org/10.1016/S0092-8674(00)80495-X
- A. Balsalobre, F. Damiola, and U. Schibler, "A serum shock induces circadian gene expression in mammalian tissue culture cells", Cell, Vol. 93, pp. 929-937, 1998. https://doi.org/10.1016/S0092-8674(00)81199-X
- M. Akashi and E. Nishida, "Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock", Genes Dev., Vol. 14, pp. 645-649, 2000.
- K. Sanada, T. Okano, and Y. Fukada, "Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1", J. Biol. Chem., Vol. 277, pp. 267- 271, 2002. https://doi.org/10.1074/jbc.M107850200
-
H. S. Shim, H. Kim, J. Lee, G. H. Son, S. Cho, T. H Oh, S. H. Kang, D.-S. Seen, K. H. Lee, and K. Kim, "Rapid activation of CLOCK by
$Ca^{2+}$ - dependent protein kinase C mediates resetting of the mammalian circadian clock", EMBO Rep., Vol. 8, pp. 366-371, 2007. https://doi.org/10.1038/sj.embor.7400920 - M. Gallego and D. M. Virshup, "Post-translational modifications regulate the ticking of the circadian clock", Nature Rev. Mol. Cell Biol., Vol. 8, pp. 139- 148, 2007. https://doi.org/10.1038/nrm2106
- K. Kaasik and C. C. Lee, "Reciprocal regulation of haem biosynthesis and the circadian clock in mammals", Nature, Vol. 430, pp. 467-471, 2004. https://doi.org/10.1038/nature02724
- T. K. Sato, S. Panda1, L. J. Miraglia, T. M. Reyes, R. D. Rudic, P. McNamara, K. A. Naik, G. A. FitzGerald, S. A. Kay, J. B. Hogenesch, "A functional genomics strategy reveals Rora as a component of the mammalian circadian clock", Neuron, Vol. 43, pp. 527-537, 2004. https://doi.org/10.1016/j.neuron.2004.07.018
-
N. Preitner, F. Damiola1, L. L. Molina, J. Zakany, D. Duboule, U. Albrecht, U. Schibler, "The orphan nuclear receptor REV-ERB
$\alpha$ controls circadian transcription within the positive limb of the mammalian circadian oscillator", Cell, Vol. 110, pp. 251-260, 2002. https://doi.org/10.1016/S0092-8674(02)00825-5 - M. Reick, J. A. Garcia, C. Dudley, and S. L. McKnight, "NPAS2: an analog of clock operative in the mammalian forebrain", Science, Vol. 293, pp. 506-509, 2001. https://doi.org/10.1126/science.1060699
- J. P. DeBruyne, D. R. Weaver, and S. M. Reppert, "CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock", Nature Neurosci., Vol. 10, pp. 543-545, 2007. https://doi.org/10.1038/nn1884
- J. P. DeBruyne, D. R. Weaver, and S. M. Reppert, "Peripheral circadian oscillators require CLOCK", Curr. Biol., Vol. 17, pp. 538-539, 2007. https://doi.org/10.1016/j.cub.2007.05.067
- F. W. Turek, C. Joshu, A. Kohsaka, E. Lin, G. Ivanova, E. McDearmon, A. Laposky, S. Losee- Olson, A. Easton, D. R. Jensen, R. H. Eckel, J. S. Takahashi, J. Bass, "Obesity and metabolic syndrome in circadian Clock mutant mice", Science, Vol. 308, pp. 1043-1045, 2005. https://doi.org/10.1126/science.1108750
- R. V. Kondratov, A. A. Kondratova, C. Lee, V. Y. Gorbacheva, M. V. Chernov, and M. P. Antoch, "Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES", Cell Cycle., Vol. 5, pp. 890-895, 2006. https://doi.org/10.4161/cc.5.8.2684
- H. Dardente, E. E. Fortier, V. Martineau, and N. Cermakian, "Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression", Biochem. J., Vol. 402, pp. 525-536, 2007. https://doi.org/10.1042/BJ20060827
-
T. Shirogane, J. Jin, X. L. Ang, and J. W. Harper, "SCF
$\beta$ -TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein", J. Biol. Chem., Vol. 280, pp. 26863-26872, 2005. https://doi.org/10.1074/jbc.M502862200 -
M. Akashi, Y. Tsuchiya, T. Yoshino, and E. Nishida, "Control of intracellular dynamics of mammalian period proteins by casein kinase
$I{\varepsilon}$ ($CKI{\varepsilon}$ ) and$CKI{\delta}$ in cultured cells", Mol. Cell Biol., Vol. 22, pp. 1693-1703, 2002. https://doi.org/10.1128/MCB.22.6.1693-1703.2002 - L. Busino, F. Bassermann, A. Maiolica, C. Lee, P. M. Nolan, S. I. H. Godinho, G. F. Draetta, M. Pagano, "SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins", Science, Vol. 316, pp. 900-904, 2007. https://doi.org/10.1126/science.1141194
- S. I. H. Godinho, E. S. Maywood, L. Shaw, V. Tucci, A. R. Barnard, L. Busino, M. Pagano, R. Kendall, M. M. Quwailid, M. R. Romero, J. O'Neill, J. E. Chesham, D. Brooker, Z. Lalanne, M. H. Hastings, P. M. Nolan, "The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period", Science, Vol. 316, pp. 897-900, 2007. https://doi.org/10.1126/science.1141138
- S. M. Siepka, S.-H. Yoo, J. Park, W. Song, V. Kumar, Y. Hu, C. Lee, J. S. Takahashi, "Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression", Cell, Vol. 129, pp. 1011-1023, 2007. https://doi.org/10.1016/j.cell.2007.04.030
- L. Cardone, J Hirayama, F. Giordano, T. Tamaru, J. J. Palvimo, P. Sassone-Corsi, "Circadian clock control by SUMOylation of BMAL1", Science, Vol. 309, pp. 1390-1394, 2005. https://doi.org/10.1126/science.1110689
- J. Hirayama, S. Sahar, B. Grimaldi, T. Tamaru, K. Takamatsu, Y. Nakahata, and P. Sassone-Corsi, "CLOCK-mediated acetylation of BMAL1 controls circadian function", Nature, Vol. 450, pp. 1086-1090, 2007. https://doi.org/10.1038/nature06394
- J. P. Etchegaray, C. Lee, P. A. Wade, and S. M. Reppert, "Rhythmic histone acetylation underlies transcription in the mammalian circadian clock", Nature, Vol. 421, pp. 177-182, 2003. https://doi.org/10.1038/nature01314
- J. A. Ripperger and U. Schibler, "Rhythmic CLOCKBMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions" Nature Genet., Vol. 38, pp. 369-374, 2006. https://doi.org/10.1038/ng1738
- M. Doi, J. Hirayama, and P. Sassone-Corsi, "Circadian regulator CLOCK is a histone acetyltransferase", Cell, Vol. 125, pp. 497-508, 2006. https://doi.org/10.1016/j.cell.2006.03.033
- Y. Nakahata, M. Kaluzova, B. Grimaldi, S. Sahar, J. Hirayama, D. Chen, L. P. Guarente, P. Sassone Corsi, "The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control", Cell, Vol. 134, pp. 329-340, 2008. https://doi.org/10.1016/j.cell.2008.07.002
- G. Asher, D. Gatfield, M. Stratmann, H. Reinke, C. Dibner, F. Kreppel, R. Mostoslavsky, F. W. Alt, U. Schibler, "SIRT1 regulates circadian clock gene expression through PER2 deacetylation", Cell, Vol. 134, pp. 317-328, 2008. https://doi.org/10.1016/j.cell.2008.06.050
- S. Y. Chen, S.-T. Chen, K.-B. Choo, M.-F. Hou, K.- T. Yeh, S.-J. Kuo, and J.-G. Chang, "Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers", Carcinogenesis, Vol. 26, pp. 1241-246, 2005. https://doi.org/10.1093/carcin/bgi075
- A. E. Hoffman, T. Zheng, Y. Ba, and Y. Zhu, "The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response", Mol. Cancer Res., Vol. 6, pp. 1461-1468, 2008. https://doi.org/10.1158/1541-7786.MCR-07-2094
- S. Gery, N. Komatsu, L. Baldjyan, A. Yu, D. Koo, H. P. Koeffler, "The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells", Mol. Cell, Vol. 22, pp. 375-382, 2006. https://doi.org/10.1016/j.molcel.2006.03.038
- L. Fu, H. Pelicano, J. Liu, P. Huang, and C. Lee, "The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo", Cell, Vol. 111, pp. 41-50, 2002. https://doi.org/10.1016/S0092-8674(02)00961-3
- S. Gery, A. F. Gombart, W. S. Yi, C. Koeffler, W.- K. Hofmann, and H. P. Koeffler, "Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia", Blood, Vol.106, pp. 2827-2836, 2005. https://doi.org/10.1182/blood-2005-01-0358
- W. S. Yang and B. R. Stockwell, "Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest", Genome Biol., Vol. 9, pp. 92, 2008. https://doi.org/10.1186/gb-2008-9-6-r92
- N. Cermakian, L. Monaco, M. P. Pando, A. Dierich, and P. Sassone-Corsi, "Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene", EMBO J., Vol. 20, pp. 3967-3974, 2001. https://doi.org/10.1093/emboj/20.15.3967
- B. Zheng, U. Albrecht, K. Kaasik, M. Sage, W. Lu, S. Vaishnav, Q. Li, Z. S. Sun, G. Eichele, A. Bradley, C. C. Lee, "Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock", Cell, Vol. 105, pp. 683-694, 2001. https://doi.org/10.1016/S0092-8674(01)00380-4
- K. Bae, X. Jin, E. S. Maywood, M. H. Hastings, S. M. Reppert, and D. R. Weaver, "Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock", Neuron, Vol.30, pp. 525-536, 2001. https://doi.org/10.1016/S0896-6273(01)00302-6
- B. Zheng, D. W. Larkin, U. Albrecht, Z. S. Sun, M. Sage, G. Eichele, C. C. Lee, and A. Bradley, "The mPer2 gene encodes a functional component of the mammalian circadian clock", Nature, Vol. 400, pp. 169-173, 1999. https://doi.org/10.1038/22118
- S. Gery, R. K.Virk, K. Chumakov, A. Yu, and H. P. Koeffler, "The clock gene Per2 links the circadian system to the estrogen receptor", Oncogene, Vol. 26, pp. 7916-7920, 2007. https://doi.org/10.1038/sj.onc.1210585
- K. A. Green and J. S. Carroll, "Oestrogen-receptormediated transcription and the influence of co-factors and chromatin state", Nature Rev. Cancer, Vol. 7, pp. 713-722, 2007. https://doi.org/10.1038/nrc2211
- J. Hirayama and P. Sassone-Corsi, "Structural and functional features of transcription factors controlling the circadian clock", Curr. Opin. Genet. Dev., Vol. 15, pp. 548-556, 2005. https://doi.org/10.1016/j.gde.2005.07.003
- M. J. Zylka, L. P. Shearman, J. D. Levine, X. Jin, D. R. Weaver, S. M. Reppert, "Molecular analysis of mammalian timeless", Neuron, Vol. 21, pp. 1115-1122, 1998. https://doi.org/10.1016/S0896-6273(00)80628-5
- M. A. Gauger and A. Sancar, "Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer", Cancer Res., Vol. 65, pp. 6828-6834, 2005. https://doi.org/10.1158/0008-5472.CAN-05-1119
- M. P. Antoch, V. Y. Gorbacheva, O. Vykhovanets, I. A. Toshkov, R. V. Kondratov, A. A. Kondratova, C. Lee, and A. Y. Nikitin, "Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis", Cell Cycle, Vol. 7, pp. 1197-1204, 2008. https://doi.org/10.4161/cc.7.9.5886
- B. H. Miller, B. H. Miller, E. L. McDearmon, S. Panda, K. R. Hayes, J. Zhang, J. L. Andrews, M. P. Antoch, J. R. Walker, K. A. Esser, J. B. Hogenesch, and J. S. Takahashi, "Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation", Proc. Natl. Acad. Sci, Vol. 104, pp. 3342-3347, 2007. https://doi.org/10.1073/pnas.0611724104
- N. Ozturk, J. H. Lee, S. Gaddameedhi, and A. Sancar, "Loss of cryptochrome reduces cancer risk in p53 mutant mice", Proc. Natl. Acad. Sci., Vol. 106, pp. 2841-2846, 2009. https://doi.org/10.1073/pnas.0813028106
- T. Hunt and P. Sassone-Corsi, "Riding tandem: circadian clocks and the cell cycle", Cell, Vol. 129, pp. 461-464, 2007. https://doi.org/10.1016/j.cell.2007.04.015
- L. Canaple, T. Kakizawa, and V. Laudet, "The days and nights of cancer cells", Cancer Res., Vol. 63, pp. 7545-7552, 2003.
- L. Rensing and K. Goedeke, "Circadian rhythm and cell cycle: possible entraining mechanisms", Chronobiologia, Vol. 3, pp. 853-865, 1976.
- J. Hirayama, L. Cardone, M. Doi, and P. Sassone- Corsi, "Common pathways in circadian and cell cycle clocks: light-dependent activation of Fos/AP- 1 in zebrafish controls CRY-1a and WEE-1", Proc. Natl. Acad. Sci., Vol. 102, pp. 10194-10199, 2005. https://doi.org/10.1073/pnas.0502610102
- P. G. Roy and A. M. Thompson, "Cyclin D1 and breast cancer", Breast, Vol. 15, pp. 718-727, 2006. https://doi.org/10.1016/j.breast.2006.02.005
- T. H. Kang, J. T. Reardon, M. Kemp, and A. Sancar, "Circadian oscillation of nucleotide excision repair in mammalian brain", Proc. Natl. Acad. Sci., Vol. 106, pp. 2864-2867, 2009. https://doi.org/10.1073/pnas.0812638106
- J. W. Barnes, S. A. Tischkau, J. A. Barnes, J. W. Mitchell, P. W. Burgoon, J. R. Hickok, and M. U. Gillette, "Requirement of mammalian Timeless for circadian rhythmicity", Science, Vol. 302, pp. 439-442, 2003. https://doi.org/10.1126/science.1086593
- K. Unsal-Kacmaz, T. E. Mullen, W. K. Kaufmann, and A. Sancar, "Coupling of human circadian and cell cycles by the timeless protein", Mol. Cell Biol., Vol. 25, pp. 3109-3116, 2005. https://doi.org/10.1128/MCB.25.8.3109-3116.2005
- M. Oklejewicz, E. Destici, F. Tamanini, R. A. Hut, R. Janssens, G. T.J. van der Horst, "Phase resetting of the mammalian circadian clock by DNA damage", Curr. Biol., 18, pp. 286-291, 2008. https://doi.org/10.1016/j.cub.2008.01.047
- J. J. Gamsby, J. J. Loros, and J. C. Dunlap, "A phylogenetically conserved DNA damage response resets the circadian clock", J. Biol. Rhythms, Vol. 24, pp. 193-202, 2009. https://doi.org/10.1177/0748730409334748
- A. M. Pregueiro, Q. Liu, C. L. Baker, J. C. Dunlap, and J. J. Loros, "The Neurospora checkpoint kinase 2: a regulatory link between the circadian and cell cycles", Science, Vol. 313, pp. 644-649, 2006. https://doi.org/10.1126/science.1121716
- R. R. Klevecz, J. Bolen, G. Forrest, and D. B. Murray, "A genomewide oscillation in transcription gates DNA replication and cell cycle", Proc. Natl. Acad. Sci., Vol. 101, pp. 1200-1205, 2004. https://doi.org/10.1073/pnas.0306490101
- Z. Chen, E. A. Odstrcil, B. P. Tu, and S. L. McKnight, "Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity", Science, Vol. 316, pp. 1916-1919, 2007. https://doi.org/10.1126/science.1140958
- K. Eckel-Mahan, and P. Sassone-Corsi, "Metabolism control by the circadian clock and vice versa", Nature Struct. Mol. Biol., Vol. 16, pp. 462-467, 2009. https://doi.org/10.1038/nsmb.1595
- F. A. Scheer, M. F. Hilton, C. S. Mantzoros, and S. A. Shea, "Adverse metabolic and cardiovascular consequences of circadian misalignment", Proc. Natl. Acad. Sci., Vol. 106, pp. 4453-4458, 2009. https://doi.org/10.1073/pnas.0808180106
- C. B. Green, N. Douris, S. Kojima , C. A. Strayer, J. Fogerty, D. Lourim, S. R. Keller, and J. C. Besharse, "Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity", Proc. Natl. Acad. Sci., Vol. 104, pp. 9888-9893, 2007. https://doi.org/10.1073/pnas.0702448104
- X. Yang, M. Downes, R. T. Yu, A. L. Bookout, W. He, M. Straume, D. J. Mangelsdorf, R. M. Evans, "Nuclear receptor expression links the circadian clock to metabolism", Cell, Vol. 126, pp. 801-810, 2006. https://doi.org/10.1016/j.cell.2006.06.050
-
C. Liu, S. Li, T. Liu, J. Borjigin, and J. D. Lin, "Transcriptional coactivator PGC-
$1\alpha$ integrates the mammalian clock and energy metabolism", Nature, Vol. 447, pp. 477-481, 2007. https://doi.org/10.1038/nature05767 - K. Oishi, K. Miyazakia, K. Kadota, R. Kikuno, T. Nagase, G.Atsumi, N. Ohkura, T. Azama, M. Mesaki, S. Yukimasa, H. Kobayashi, C. Iitaka, T. Umehara, M. Horikoshi, T. Kudo, Y. Shimizu, M. Yano, M. Monden, K. Machida, J. Matsuda, S. Horie, T. Todo, and N. Ishida, "Genome-wide expression analysis of mouse liver reveals CLOCKregulated circadian output genes", J. Biol. Chem., Vol. 278, pp. 41519-41527, 2003. https://doi.org/10.1074/jbc.M304564200
- T. Alenghat, K. Meyers, S. E. Mullican, K. Leitner, A. Adeniji-Adele, J. Avila, M. Buan, R. S. Ahima, K. H. Kaestner, and M. A. Lazar, "Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology", Nature, 456, pp. 997-1000, 2008. https://doi.org/10.1038/nature07541
- S. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, "Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase", Nature, Vol. 403, pp. 795-800, 2000. https://doi.org/10.1038/35001622
- C. L. Brooks and W. Gu, "How does SIRT1 affect metabolism, senescence and cancer?", Nature Rev. Cancer, Vol. 9, pp. 123-128, 2009. https://doi.org/10.1038/nrc2562
- H. Vaziri, S. K. Dessain, E. N. Eaton, S.-I. Imai, R. A. Frye, T. K. Pandita, L. Guarente, R. A. Weinberg, "hSIR2SIRT1 functions as an NADdependent p53 deacetylase", Cell, Vol. 107, pp. 149-159, 2001. https://doi.org/10.1016/S0092-8674(01)00527-X
- W. Y. Chen, D. H. Wang, R. W. C. Yen, J. Luo, W. Gu, S. B. Baylin, "Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNAdamage responses", Cell, 123, pp. 437-448, 2005. https://doi.org/10.1016/j.cell.2005.08.011
- H. Y. Cohen, S. Lavu, K. J. Bitterman, B. Hekking, T. A. Imahiyerobo, C. Miller, R. Frye, H. Ploegh, B. M. Kessler, D. A. Sinclair, "Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis", Mol. Cell, Vol. 13, pp. 627-638, 2004. https://doi.org/10.1016/S1097-2765(04)00094-2
- R. H. Wang, K. Sengupta, C. Li, H.-S. Kim, L. Cao, C. Xiao, S. Kim, X. Xu, Y. Zheng, B. Chilton, R. Jia, Z.-M. Zheng, E. Appella, X. W. Wang, T. Ried, and C.-X. Deng, "Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice", Cancer Cell, 14, pp. 312-323, 2008. https://doi.org/10.1016/j.ccr.2008.09.001
- P. Oberdoerffer, S. Michan, M. McVay, R. Mostoslavsky, J. Vann, S.-K. Park, A. Hartlerode, J. Stegmuller, A. Hafner, P. Loerch, S. M. Wright, K. D. Mills, A. Bonni, B. A. Yankner, R. Scully, T. A. Prolla, F. W. Alt, and D. A. Sinclair, "SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging", Cell, Vol. 135, pp. 907-918, 2008. https://doi.org/10.1016/j.cell.2008.10.025
- R. Firestein, G. Blander, S. Michan, P. Oberdoerffer, S. Ogino, J. Campbell, A. Bhimavarapu, S. Luikenhuis, R. de Cabo, C. Fuchs, W. C. Hahn, L. P. Guarente, and D. A. Sinclair, "The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth", PLoS ONE Vol. 3, pp. e2020, 2008. https://doi.org/10.1371/journal.pone.0002020
- B. Schwer and E. Verdin, "Conserved metabolic regulatory functions of sirtuins", Cell Metab., Vol. 7, pp. 105-112, 2008.
-
F. Picard, M. Kurtev, N. Chung, A. Topark-Ngarm, T. Senawong, R. M. de Oliveira, M. Leid, M. W. McBurney, and L. Guarente, "Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-
$\gamma$ ", Nature, Vol. 429, pp. 771-776, 2004. https://doi.org/10.1038/nature02583 - X. Li, S. Zhang, G. Blander, J. G. Tse, M. Krieger, and L. Guarente, "SIRT1 deacetylates and positively regulates the nuclear receptor LXR", Mol. Cell, Vol. 28, pp. 91-106, 2007. https://doi.org/10.1016/j.molcel.2007.07.032
- C. Crosio, N. Cermakian, C. D. Allis, and P. Sassone- Corsi, "Light induces chromatin modification in cells of the mammalian circadian clock", Nature Neurosci., Vol. 3, pp. 1241-1247, 2000. https://doi.org/10.1038/81767
- E. Borrelli, E. J. Nestler, C. D. Allis, and P. Sassone- Corsi, "Decoding the epigenetic language of neuronal plasticity", Neuron Vol. 60, pp. 961-974, 2008. https://doi.org/10.1016/j.neuron.2008.10.012
- U. Kolthur-Seetharam, F. Dantzer, M. W. McBurney, G. de Murcia, G. and P. Sassone-Corsi, "Control of AIF- mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage", Cell Cycle, Vol. 5, pp. 873-877, 2006. https://doi.org/10.4161/cc.5.8.2690
- F. Dantzer, J. C. Ame, V. Schreiber, J. Nakamura, M. J. Menissier-de, and G. de Murcia, "Poly(ADPribose) polymerase-1 activation during DNA damage and repair", Methods Enzymol., Vol. 409, pp. 493-510, 2006. https://doi.org/10.1016/S0076-6879(05)09029-4
-
J. B.Pillai, A. Isbatan, S. Imai, and M. P. Gupta, "Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2
$\alpha$ deacetylase activity", J. Biol. Chem., Vol. 280, pp. 43121-43130, 2005. https://doi.org/10.1074/jbc.M506162200 - S. A. Martin, C. J. Lord, and A. Ashworth, "DNA repair deficiency as a therapeutic target in cancer", Curr. Opin. Genet. Dev., Vol. 18, pp. 80-86, 2008. https://doi.org/10.1016/j.gde.2008.01.016
- A. Garten, S. Petzold, A. Korner, S. I. Imai, and W. Kiess, "Nampt: linking NAD biology, metabolism and cancer", Trends Endocrinol. Metab., Vol. 20, pp. 130-138, 2008.
- M. Hasmann and T. Schemainda, "FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyl transferase, represents a novel mechanism for induction of tumor cell apoptosis", Cancer Res., Vol. 63, pp. 7436-7442, 2003.
- M. F.Demierre, P. D. Higgins, S. B. Gruber, E. Hawk, and S. M. Lippman, "Statins and cancer prevention", Nature Rev. Cancer, Vol. 5, pp. 930-942, 2005. https://doi.org/10.1038/nrc1751
- M. S. Brown, J. L. Goldstein, and J. M. Dietschy, "Active and inactive forms of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the liver of the rat. Comparison with the rate of cholesterol synthesis in different physiological states", J. Biol. Chem., Vol. 254, pp. 5144-5149, 1979.
- R, R. Klevecz, R. M. Shymko, D. Blumenfeld, and P. S. Braly, "Circadian gating of S phase in human ovarian cancer", Cancer Res., Vol. 47, pp. 6267-6271, 1987.