DOI QR코드

DOI QR Code

Bi-flavonoids are Superior to Mono-flavonoid in Inhibiting Amyloid-${\beta}$ Toxicity and Fibrillogenesis through Accumulating Nontoxic Oligomer-like Structures

  • Merlin Jayalal, L.P. (Department of Biochemistry, Bharathidasan college of Arts and Science)
  • Received : 2012.06.02
  • Accepted : 2012.06.24
  • Published : 2012.06.30

Abstract

Polymerization of monomeric amyloid-${\beta}$ peptides ($A{\beta}$) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of $A{\beta}$ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigated the effects of mono- and bi-flavonoids on $A{\beta}42$ toxicity and fibrillogenesis and found that the bi-flavonoid, taiwaniaflavone (TF) effectively and specifically inhibits $A{\beta}$ toxicity and fibrillogenesis. Compared to TF, the mono-flavonoid apigenin (AP) is less effective and less specific. Our data showed that differential effects of the mono- and bi-flavonoids on $A{\beta}$ fibrillogenesis correlate with their varying cytoprotective efficacies. We also found that other bi-flavonoids, namely 2',8"-biapigenin, amentoflavone, and sumaflavone, can also effectively inhibit $A{\beta}$ toxicity and fibrillogenesis, implying that the participation of two mono-flavonoids in a single bi-flavonoid molecule enhanced their activity. Bi-flavonoids, while strongly inhibited $A{\beta}$ fibrillogenesis, accumulated nontoxic $A{\beta}$ oligomeric structures, suggesting that these are off-pathway-oligomers. Moreover, TF abrogated the toxicity of preformed $A{\beta}$ oligomers and fibrils, indicating that TF and other bi-flavonoids may also reduce the toxicity of toxic $A{\beta}$ species. Altogether, our data clearly show that bi-flavonoids, possibly due to the possession of two $A{\beta}$ binders separated by an appropriate size linker, are likely to be promising therapeutics to suppress $A{\beta}$ toxicity.

Keywords

References

  1. C. Haass, A. Y. Hung, M. G. Schlossmacher, T. Oltersdorf, D. B. Teplow and D. J. Selkoe, "Normal cellular processing of the beta-amyloid precursor protein results in the secretion of the amyloid beta peptide and related molecules", Ann N Y Acad Sci, Vol. 695, pp. 109-116, 1993. https://doi.org/10.1111/j.1749-6632.1993.tb23037.x
  2. J. Hardy and D. J. Selkoe, "The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics", Science, Vol. 297, pp. 353-356, 2002. https://doi.org/10.1126/science.1072994
  3. R. Kayed and C. G. Glabe, "Conformation-dependent anti-amyloid oligomer antibodies", Methods Enzymol, Vol. 413, pp. 326-344, 2006. https://doi.org/10.1016/S0076-6879(06)13017-7
  4. A. Petit, F. Bihel, C. Alves da Costa, O. Pourquie, F. Checler and J. L. Kraus, "New protease inhibitors prevent gamma-secretase-mediated production of Abeta40/42 without affecting Notch cleavage", Nat Cell Biol, Vol. 3, pp. 507-511, 2001. https://doi.org/10.1038/35074581
  5. D. Commenges, V. Scotet, S. Renaud, H. Jacqmin-Gadda, P. Barberger-Gateau and J. F. Dartigues, "Intake of flavonoids and risk of dementia", Eur J Epidemiol, Vol. 16, pp. 357-363, 2000. https://doi.org/10.1023/A:1007614613771
  6. L. Puglielli, R. E. Tanzi and D. M. Kovacs, "Alzheimer's disease: the cholesterol connection", Nat Neurosci, Vol. 6, pp. 345-351, 2003. https://doi.org/10.1038/nn0403-345
  7. T. D. Rea, J. C. Breitner, B. M. Psaty, A. L. Fitzpatrick, O. L. Lopez, A. B. Newman, W. R. Hazzard, P. P. Zandi, G. L. Burke, C. G. Lyketsos, C. Bernick and L. H. Kuller, "Statin use and the risk of incident dementia: the Cardiovascular Health Study", Arch Neurol, Vol. 62, pp.1047-1051, 2005. https://doi.org/10.1001/archneur.62.7.1047
  8. A. A. Reinke and J. E. Gestwicki, "Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility", Chem. Biol. Drug. Des., Vol. 70, pp. 206-215, 2007. https://doi.org/10.1111/j.1747-0285.2007.00557.x
  9. K. H. Lee, B. H. Shin, K. J. Shin, D. J. Kim and J. Yu, "A hybrid molecule that prohibits amyloid fibrils and alleviates neuronal toxicity induced by beta-amyloid (1-42)", Biochem Biophys Res Commun, Vol. 328, pp. 816-823, 2005. https://doi.org/10.1016/j.bbrc.2005.01.030
  10. D. E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz, S. Engemann, A. Pastore and E. E. Wanker, "EGCG redirects amyloidogenic polypeptides into unstructured, offpathway oligomers", Nat. Struct. Mol. Biol., Vol. 15, pp. 558-566, 2008. https://doi.org/10.1038/nsmb.1437
  11. Y. S. Han, W. H. Zheng, S. Bastianetto, J. G. Chabot and R. Quirion, "Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C", Br J. Pharmacol , Vol. 141, pp. 997-1005, 2004. https://doi.org/10.1038/sj.bjp.0705688
  12. J. J. Yerbury, S. Poon, S. Meehan, B. Thompson, J. R. Kumita, C. M. Dobson and M. R. Wilson, "The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures", FASEB J., Vol. 21, pp. 2312-2322, 2007. https://doi.org/10.1096/fj.06-7986com
  13. S. S. Kang, J. Y. Lee, Y. K. Choi, S. S. Song, J. S. Kim, S. J. Jeon, Y. N. Han, K. H. Son and B. H. Han, "Neuroprotective effects of naturally occurring bioflavonoids", Bioorg. Med. Chem. Lett., Vol. 15, pp. 3588-3591, 2005. https://doi.org/10.1016/j.bmcl.2005.05.078
  14. Y. R. Pokharel, J. W. Yang, J. Y. Kim, H. W. Oh, H. G. Jeong, E. R. Woo and K. W. Kang, "Potent inhibition of the inductions of inducible nitric oxide synthase and cyclooxygenase-2 by taiwaniaflavone", Nitric Oxide, Vol. 15, pp. 217-225, 2006. https://doi.org/10.1016/j.niox.2006.01.001
  15. M. Shahnawaz, A. Thapa and I. S. Park, "Stable activity of a deubiquitylating enzyme (Usp2-cc) in the presence of high concentrations of urea and its application to purify aggregation-prone peptides", Biochem Biophys Res Commun, Vol. 359, pp. 801-805, 2007. https://doi.org/10.1016/j.bbrc.2007.05.186
  16. H. Naiki, K. Hasegawa, I. Yamaguchi, H. Nakamura, F. Gejyo and K. "Nakakuki, Apolipoprotein E and antioxidants have different mechanisms of inhibiting Alzheimer's beta-amyloid fibril formation in vitro", Biochemistry, Vol. 37, pp. 17882-17889, 1998. https://doi.org/10.1021/bi980550y
  17. M. B. Hansen, S. E. Nielsen and K. Berg, "Reexamination and further development of a precise and rapid dye method for measuring cell growth/ cell kill", J. Immunol Methods, Vol. 119, pp. 203- 210, 1989. https://doi.org/10.1016/0022-1759(89)90397-9
  18. M. Necula, R. Kayed, S. Milton and C. G. Glabe, "Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct", J Biol Chem, Vol. 282, pp. 10311-10324, 2007. https://doi.org/10.1074/jbc.M608207200
  19. E. Y. Chi, S. L. Frey, A. Winans, K. L. Lam, K. Kjaer, J. Majewski and K. Y. Lee, "Amyloid-beta fibrillogenesis seeded by interface-induced peptide misfolding and self-assembly", Biophys. J., Vol. 98, pp. 2299-2308, 2010. https://doi.org/10.1016/j.bpj.2010.01.056
  20. H. Naiki and K. Nakakuki, "First-order kinetic model of Alzheimer's beta-amyloid fibril extension in vitro", Lab Invest., Vol. 74, pp. 374-383, 1996.
  21. J. L. Tomic, A. Pensalfini, E. Head and C. G. Glabe, "Soluble fibrillar oligomer levels are elevated in Alzheimer's disease brain and correlate with cognitive dysfunction", Neurobiol Dis., Vol. 35, pp. 352-358, 2009. https://doi.org/10.1016/j.nbd.2009.05.024
  22. C. A. McLean, R. A. Cherny, F. W. Fraser, S. J. Fuller, M. J. Smith, K. Beyreuther, A. I. Bush and C. L. Masters, "Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease", Ann Neurol., Vol. 46, pp. 860-866, 1999. https://doi.org/10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M
  23. A. Jan, O. Gokce, R. Luthi-Carter and H. A. Lashuel, "The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity", J. Biol. Chem., Vol. 283, pp. 28176-28189, 2008. https://doi.org/10.1074/jbc.M803159200
  24. M. A. Vargo, O. H. Voss, F. Poustka, A. J. Cardounel, E. Grotewold and A. I. Doseff, "Apigenininduced- apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells", Biochem Pharmacol, Vol. 72, pp. 681-692, 2006. https://doi.org/10.1016/j.bcp.2006.06.010
  25. K. Ono, Y. Yoshiike, A. Takashima, K. Hasegawa, H. Naiki and M. Yamada, "Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease", J. Neurochem., Vol. 87, pp.172-181, 2003.
  26. M. Masuda, N. Suzuki, S. Taniguchi, T. Oikawa, T. Nonaka, T. Iwatsubo, S. Hisanaga, M. Goedert and M. Hasegawa, "Small molecule inhibitors of alphasynuclein filament assembly", Biochemistry, Vol. 45, pp. 6085-6094, 2006. https://doi.org/10.1021/bi0600749