DOI QR코드

DOI QR Code

Investigation of the Changes of Fabry-Perot Fringe Patterns in Porous Silicon During Etching Process

  • 투고 : 2012.01.01
  • 심사 : 2012.03.27
  • 발행 : 2012.03.30

초록

Changes of Fabry-Perot fringe patterns in porous silicon during etching process has been investigated. Four porous silicon samples were prepared with four different etch currents: (a) 10 $mA/cm^2$, (b) 30 $mA/cm^2$, (c) 50 $mA/cm^2$, (d) 100 $mA/cm^2$, respectively. Optical characterization of Fabry-Perot fringe pattern on porous silicon was achieved by Ocean optics 2000 spectrometer. The change of Fabry-Perot fringes was monitored and measured during the etching process. Fabry-Perot fringes pattern start to form after couple of minutes. As the etching time increased, more reflection peaks were observed. Its full width at half maximum (FWHM) decreased rapidly when the etching time increased.

키워드

참고문헌

  1. P. Gupta, V. L. Colvin, and S. M. George, "Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces", Phys. ReV. B, Vol. 37, p. 8234, 1988. https://doi.org/10.1103/PhysRevB.37.8234
  2. P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George, "FTIR studies of H2O and D2O decomposition on porous silicon surfaces", Surf. Sci., Vol. 245, p. 360, 1991. https://doi.org/10.1016/0039-6028(91)90038-T
  3. Y. J. Chabal, "Infrared spectroscopy of semiconductor surfaces: H-terminated silicon surfaces", J. Mol. Struct., Vol. 292, p. 65, 1993. https://doi.org/10.1016/0022-2860(93)80090-I
  4. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl. Phys. Lett., Vol. 57, p. 1046, 1990. https://doi.org/10.1063/1.103561
  5. A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline silicon", Nature, Vol. 353, p. 335, 1991. https://doi.org/10.1038/353335a0
  6. K. J. Nash, P. D. J. Calcott, L. T. Canham, and M. J. Kane, "The origin of efficient luminescence in highly porous silicon", J. Luminesc., Vol. 60-61, p. 297, 1994. https://doi.org/10.1016/0022-2313(94)90150-3
  7. J. L. Heinrich, C. L. Curtis, G. M. Credo, K. L. Kavanagh, and M. J. Sailor, "Luminescent colloidal silicon suspensions from porous silicon", Science, Vol. 255, p. 66, 1992. https://doi.org/10.1126/science.255.5040.66
  8. R. L. Smith and S. D. Collins, "Porous silicon formation mechanisms", J. Appl. Phys., Vol. 71, R. 1, 1992.
  9. P. C. Searson, "Advances in Electrochemical Sciences and Engineering", VCH: Mannheim, Germany, p. 69, 1994.
  10. J. Drott, K. Lindstrom, L. Rosengren, and T. Laurell, "Porous silicon as the carrier matrix in microstructured enzyme reactors yielding high enzyme activities", J. Micromech. Microeng., Vol. 7, p. 14, 1997. https://doi.org/10.1088/0960-1317/7/1/004
  11. K. L. Beattie, W. G. Beattie, L. Meng, S. L. Turner, R. Coral-Vazquez, D. D. Smith, P. M. McIntyre, and D. D. Dao, "Advances in genosensor research", Clin. Chem., Vol. 41, p. 700, 1995.
  12. T. Laurell, J. Drott, L. Rosengren, and K. Lind-strom, "Enhanced enzyme activity in silicon integrated enzyme reactors utilizing porous silicon as the coupling matrix", Sens. Actuators, B, Vol. 31, p. 161, 1996. https://doi.org/10.1016/0925-4005(96)80061-X
  13. V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous silicon-based optical interferometric biosensor", Science, Vol. 278, p. 840, 1997. https://doi.org/10.1126/science.278.5339.840
  14. M. J. Sailor, "Properties of porous silicon", Datareview Ser. No. 18, Canham: London, p. 364, 1997.

피인용 문헌

  1. Chemical Sensors Based on Distributed Bragg Reflector Porous Silicon Smart Particles vol.8, pp.1, 2015, https://doi.org/10.13160/ricns.2015.8.1.67
  2. Well Defined One-Dimensional Photonic Crystal Templated by Rugate Porous Silicon vol.6, pp.3, 2013, https://doi.org/10.13160/ricns.2013.6.3.183
  3. Fabrication and Characterization of Optically Encoded Porous Silicon Smart Particles vol.7, pp.4, 2014, https://doi.org/10.13160/ricns.2014.7.4.221
  4. Preparation and Characterization of Flexible Optical Composite Films Based on Bragg-Structured Interferometer vol.6, pp.4, 2013, https://doi.org/10.13160/ricns.2013.6.4.244
  5. Fabrication and Characterization of Free-Standing Silicon Nanowires Based on Ultrasono-Method vol.6, pp.3, 2013, https://doi.org/10.13160/ricns.2013.6.3.170
  6. Preparation and Characterization of Porous Polymethylmethacrylate Film Showing Optical Reflectivity vol.6, pp.2, 2013, https://doi.org/10.13160/ricns.2013.6.2.82