
IJR International Journal of Railway

Vol. 5, No. 2 / June 2012, pp. 65-70

Vol. 5, No. 2 / June 2012 − 65 −

The Korean Society for Railway

Formal Analysis of Automatic Train Protection and

Block System for Regional Line Using VDM++

Guo Xie†, Xinhong Hei**, Hiroshi Mochizuki*, Sei Takahashi* and Hideo Nakamura*

Abstract

This paper introduced a novel railway system, Automatic Train Protection and Block (ATPB) briefly, which is proposed

to improve the efficiency of existing regional train lines with low cost in Japan. The biggest superiority of ATPB system

is a great use of universal and mature technologies, such as GPS and regular mobile telephone networks, so that there is

nearly no increment of trackside equipments in the reconstruction. Then in order to guarantee the system safety, a formal

model of ATPB is established and analyzed by formal method VDM++. Firstly, the specification is specified by VDM++

formally without ambiguity. Secondly, its internal consistency is proved by discharging the proof obligations. And

finally, its satisfiability is checked by systematic testing, which executes specification and checks the outputs against cor-

responding inputs.

Key words : ATPB, Railway System, Formal Methods, VDM++

1. Introduction

How to improve the utilization rate and efficiency, and

ensure the safety and reliability with low cost at the same

time, has become an increasingly serious problem for

existing regional train lines in Japan. Until now many of

new control and management systems with high perfor-

mance, such as COSMOS by JR-EAST and COMTRAC

by JR-CENTRAL have been developed for Shinkansen in

Japan, and achieved great success. However, the high cost

of these powerful systems cannot be afforded by the

regional lines whose operation with low profit margin.

In terms of these current problems, a novel Automatic

Train Protection and Block (ATPB) railway system is pro-

posed by the author aid in the reconstruction of regional

train lines in Japan. After studying the system and clarify-

ing the requirements, the specification should have to be

depicted firstly, and then the software is designed in accor-

dance with the specification. As you know, errors result-

ing from the ambiguity and contradictory of specification,

are very difficult to detect in the following steps. Further-

more, railway system is safety-critical system [1,2], whose

failure may result in death or serious injury to people. The

common approach to detect and remove errors and bugs

by testing the possible problems as is usually inadequate.

By contrast, the formal methods (FMs), who specify and

prove system in a rigorous mathematical way, are highly

recommended for Software Safety Integrity Level 4

(SWSIL4) systems by international standards, such as EN

50128, EN 50129. They can eliminate the ambiguity and

verify the specification of the system before accomplish-

ment. Until now, FMs have been adopted in several rail-

way systems [3-5]. However, as a novel railways system,

ATPB has not been analyzed formally; what’s more,

because of the complexity of the railway system structure

and difficulties in validation, almost all of the applications

of FMs focus on just subsystem of railway, such as inter-

locking system, automatic train stop (ATS) or level cross-

ing controller. This paper will analyze the whole ATPB

system formally by VDM++ [6] as the reasons as follow-

ing: it is a super set of the ISO standardized notation

VDM-SL with rigorous definition, well tool supports, and

what`s more important is that it is similar to that of object-

oriented programming languages: structural aspects of

†

*

**

Corresponding author: College of Science and Technology, Nihon University,

Chiba, Japan

E-mail : shakoku2010@yahoo.co.jp

College of Science and Technology, Nihon University, Chiba, Japan

School of Computer Science and Engineering, Xi'an University of Technology

− 66 −

Guo Xie, Xinhong Hei, Hiroshi Mochizuki, Sei Takahashi and Hideo Nakamura / IJR, 5(2), 65-70, 2012

software are specified using classes and instance vari-

ables, that makes it easy to understand by engineer and

programmer.

The aim of this paper is to formalize and validate the

specification of ATPB. The rest of this paper is organized

as follows: the overall structure of ATPB is depicted in

section 2; followed by the formal model for ATPB is

established in section 3; and section 4 validates the

VDM++ model; at last, section 5 is the conclusion and

future work.

2. ATPB Structure

The ATPB system in this paper is a combination of ATP

(Automatic Train Protection) and Block control system.

The main structure of this system is shown as Fig. 1.

It mainly consists of two parts, the onboard system and

control center. The former is composed of: (1) state detec-

tion subsystem, which detects the state of train, such as

position, speed and train integrity, which means whether

all carriages are still in the train; (2) ATP subsystem,

which is used to supervise the speed and will take appro-

priate actions if some certain situations happened (unre-

sponsive train operator, earthquake, disconnected rail,

overrun of the authority, etc.) to prevent accidents from

happening; (3) communication subsystem, which is used to

send and receive messages and commands to and from

control center; and (4) record system. The later is mainly

composed of: (1) communication system, which is used to

send and receive commands and messages to and from

trains; (2) interlocking system, which is responsible for the

set of points, and route set based on information received

from the trains; (3) traffic operation management and so on.

As showed in Fig. 1, the exchange of messages in this

system between trains, stations and control center are

accomplished by radio communication system. Every

train in operation is connected with control center all the

time. And the communicating process is described

briefly as: when a train approaches a station and arrives

at the entry measuring point, which is installed in

advance as regard to the next main signal in the train

running direction, then the train sends an entry request to

control center to apply for an entry permit. Then control

center checks the real-time information from its data

base, and then sends movement authority to train, if the

home is ready to receive this train. When the train pulls

into the station, and stops in the train stop territory, it

sends an arrival message to control center, then control

center releases the corresponding route, which is con-

necting to the last station, and then checks the departure

conditions and sets the points in appropriate position for

the train passing through. Meanwhile the train waits in

station until received a movement authority. In contrast,

once the train overruns of signal, the ATP triggers emer-

gency brake until stop the train. After the train departed

from station, and passed the departure measuring point,

which is also installed in advance, it sends a departure

message to control center. Then control center releases

the home and so on. And once even if only one train

becomes out of contact with control center, all trains on

the line will stop. Furthermore, control center updates the

line information real-time, and Automatic Train Protec-

tion (ATP) system supervises the movement of train all

the time, preventing the accident resulting from over

speed.

Contrast to the private communication network system

for railway, such as AATC in America, ATACS in Japan,

ETCS and CTCS in Europe and China respectively, the

biggest superiority of ATPB system is a great use of uni-

versal and mature technologies, and nearly no increment

of trackside equipments in the reconstruction of the exist-

ing regional lines. For example, the communication

between trains and control center is accomplished through

common mobile telephone network, such as docomo, Soft-

Bank and au; and the position detection of the train is real-

ized by GPS signals and necessary auxiliary equipments.

Its flow chart is showed as Fig. 2, and the measurement

error can be up to less than 3 meters, that satisfies the

actual demand.

Therefore, the reconstruction of the existing regional

lines with low cost comes true. Then in order to guarantee

the safety and reliability of ATPB software system, its

specification is formalized and analyzed in this paper.

Fig. 1 Overall Structure of ATPB

Fig. 2 Position detection based on GPS

Formal Analysis of Automatic Train Protection and Block System for Regional Line Using VDM++

− 67 −

3. Formal Specification for ATPB

As mentioned before, ATPB mainly consist of two parts,

i.e. onboard system and control center system. They will

be modeled separately by VDM++ in this section.

3.1 Onboard system

3.1.1 Running State

The running state of a train includes position, speed and

so on. And the position and speed detection of train in our

project is realized by analyzing messages from GPS and

necessary auxiliary tracking beacons. The flow diagram of

position detection is showed as Fig. 2. Considering the

variety of analytical algorithms and implementations, the

specific definition is not defined, and is described as:

EnginePosition:real*real*real==>()

EnginePosition(gps1,gps2,detector)==

is not yet specified;

3.1.2 Speed Comparator

The speed comparator is used to supervise the speed

always to prevent its speed exceeding the safe speed pro-

file, and ensure the train under speed restrictions, which is

determined by maximum line speed, curves, points, tunnel

profiles, bridges, etc. This function is accomplished by

SpeedCompare as follows:

public speedStatus: real*real -> State

speedStatus (speed, maxspeed) ==

if speed < (1 - Factor)*maxspeed

then <NormalSpeed>

elseif (1 - Factor)*maxspeed <= speed and

speed < maxspeed

then <AlarmSpeed>

else <EmergencySpeed>;

end SpeedCompare

where Factor = 0.1 is a constant, i.e. buffer capacity for the

speed. As the specification above, the speed below 90% of

the maximum speed limit is permitted speed limit, which

is the speed the driver is requested to follow and shall be

indicated to the driver. If the speed of train under permit-

ted speed, it gives a safe speed signal. If the speed up to

90% but less than the maximum speed limit, it gives a

warning signal; and while the speed exceeds the maxi-

mum speed limit, it gives a signal emergency stop.

3.1.3 ATP

ATP system will take appropriate action according to

different speed state. According to the received signal, if a

safe speed signal, it gives a safe indicate; if a warning sig-

nal, it commands the service brake to be applied; and if an

emergency brake command, it brakes the train immedi-

ately. The corresponding specification by VDM++ is

described through function SpeedCompare as,

public CheckSpeed: real ==> ()

CheckSpeed (speed) ==

(let speedStatus = speedCompare.SpeedStatus

(speed, GetMaxSpeed())

in cases speedStatus:

 <NormalSpeed> -> if not emergencyBrake.

IsEmergencyBrakeState()

then boolDisplay.SetNormal(),

 <AlarmSpeed> -> if not emergencyBrake.

IsEmergencyBrakeState()

then (StartNormalBrake();

record.WriteLog("Alarm", enginePosition)),

<EmergencySpeed> -> (StartEmergencyBrake();

 record.WriteLog("Alarm", enginePosition))

end;);

Because after the service brake has been triggered, the

brake command shall be revoked when the train speed is

equal to or below the permitted speed limit, however, once

the emergency brake command was triggered, it brakes the

train until stop. Therefore It must judge whether the emer-

gency brake is being applied firstly, even the speed state of

a train is <AlarmSpeed> at some time, service brake may

be not available, so as the <NormalSpeed>.

3.1.4 Station Arrival

As in the regional single line, the routes are defined rela-

tively to stations, so we can know the determined route

and take appropriate operations by querying the other data

stored in control center database. While a train arrives in

station, the train sends an arrival message to control cen-

ter. Once the control center receives this message from

train, it releases and unlocks the block area relative to the

last station, and queries the schedules to get the informa-

tion of next station. This is realized as,

StationArrival: TrainID*StationID

*StationID ==> bool

StationArrival (traid, past, current) ==

(UnBlocking (prior, current);

UnlockRoute (prior, current);

onboards(traid).GetPullin(false);

def next = schedules.GetNextObject(traid,

current, CurrentTime());

in (onboards(traid).SetRunObject (next);));;

3.1.5 Signal Display

In this specification, the display signals are divided into

two types, real and Boolean display. In the specification, it

− 68 −

Guo Xie, Xinhong Hei, Hiroshi Mochizuki, Sei Takahashi and Hideo Nakamura / IJR, 5(2), 65-70, 2012

is described by a parent class, Display, and two sub

classes, OnboardRealDisplay and OnboardBoolDisplay.

They are described as follows,

class OnboardRealDisplay is subclass of Display

operations

public SetCurrentSpeed: Onboard`Speed ==> ()

SetCurrentSpeed (speed) ==

actualSpeed := speed;

public SetMaxSpeed: Onboard`Speed ==> ()

SetMaxSpeed (speed) ==

 maxSpeed := speed;

…

end OnboardRealDisplay

The real quantities include current speed, position, speed

limit, time, etc. The Boolean signal display is

class OnboardBoolDisplay is subclass of Display

operations

public SetNormal: () ==> ()

SetNormal () ==

(normal:= true;

alarm := false;

emergencyBrake := false;

systemError := false;)

pre not alarm and not emergencyBrake;

…

end OnboardBoolDisplay

where “pre” predicates that before the execution of opera-

tion, alarm and emergencyBrake must be false.

3.1.6 Recorder

The function of record is beneficial to improve the qual-

ity and find out the cause of fault. The function starts

action when there are new operations, or warning and error

happened. And the record information includes name, fault

code, time and the place of train where it occurred.

public WriteLog: seq1 of char*real ==>()

WriteLog (message, pos) ==

(messageLog := messageLog^[message^ "occurred

 at "^Num2String(pos)^" on "^GetSystemTime()];

systemTime := systemTime ^ [GetSystemTime()];

 errorPostion := errorPostion ^ [pos];);

where function Num2String(pos) converts the pos (posi-

tion) which is real type data into a string type, and GetSys-

temTime() obtains the current time.

3.2 Control Center

The structure of a station block is showed as Fig. 3.

Generally, the mission of control center is controlling and

setting the signals and points according to the current state

of train and railway-network, ensuring no collision and no

derail as long as the train runs stick to the signal indicator.

Then the functions are formalized as following.

3.2.1 Pull In Check

When train approach the station, it sends the arrival mes-

sage to control center, and the control center checks the state

of relative station and track, then sends receiving message to

the train. If the receiving route is prepared, then the function

PullinCheck returns true, else return false. This is realized as,

public PullinCheck: TrainID*RunObject

*RunObject ==> bool

PullinCheck (traid, prior, next) ==

if interlock(next.station).GetInterlockState().

 platforms(next.platform) = <Free>

then (onboards(traid).GetPullout(true);

SetStrainState(traid,

mk_TrainState(<Running>, prior, next, nil));

interlocks(next.station).

SetPlatform(next.platform, <Bussy>);)

else (onboards(traid).GetPullout(false);

SetStrainState(traid, mk_TrainState(<Waiting>,

 prior, next, <In>)););

where TrainID and RunObject are the type of train and

station respectively, and RunObject is defined as:

RunObject :: station : StationID

platform : Platform

direction : Schedule`Direction;

where StationID is the ID type for station, Direction repre-

sents the direction of train, Platform defines number of

platform. All of the information, such as state, tracks and

interlocking forms are all stored in control center data-

base, which can be called conveniently.

3.2.2 Pull Out Check

When a train is stopping at a station, it keeps connection

with the control center. And the control center inquiries the

schedule for this train, if the train is going to leaving the

station in according with railway timetable, then it checks

the corresponding departure condition, including the state

Fig. 3 Structure of station block with signals

Formal Analysis of Automatic Train Protection and Block System for Regional Line Using VDM++

− 69 −

of relative station, signals and route. If all conditions are

satisfied, it turns the departure signal green, and then sends

a departure message to train; otherwise keeps the train

waiting, until train receives the departure message. This

process is accomplished by a true function as follows,

PulloutCheck: TrainID*RunObject

*RunObject ==> bool

PulloutCheck (traid, direction, next) ==

if CheckBlock(current, next) and

CheckRoute(current, next)

then (points.PointOperate(current, next);

onboards(traid).GetPullout(true);

SetStrainState(traid, mk_TrainState(<Running>,

 current, next, nil));

if next.direction = <NORMAL>

then (interlocks(current.station)

.SetRoute(<Right>, <Bussy>);

interlocks(current.station).SetBlock(<Bussy>);

interlocks(next.station)

.SetRoute(<Left>, <Bussy>);

)else

(interlocks(next.station).SetBlock(<Bussy>);

interlocks(next.station)

.SetRoute(<Right>, <Bussy>);

interlocks(current.station)

.SetRoute(<Left>, <Bussy>);))

else (onboards(traid).GetPullout(false);

SetStrainState(traid, mk_TrainState(

<Waiting>, current, next, <Out>)););

3.2.3 Route Control

All information of station, route and interlocking forms

are all stored in database. So the control center sends

appropriate route signal by querying the interlocking

forms. The route signal includes route signal for depar-

ture, route signal for receiving, and the operations are

route release, route locking and presetting a route.

SetTurnout: Choice* Turn ==> ()

SetTurnout (choice, turn) ==

if choice = <Right>

 then turnouts.right := turn

else turnouts.left := turn

pre choice in set { <Right>, <Left> } and

turn in set { <UP>, <DOWN> };

where the pre is the permission predicates, means that the

parameter choice must be either <Right> or <Left>, and

turn must be either <UP> or <DOWM>.

This section above listed some main operations relative

to block control and automatic train protection described

by VDM++. They are clearly defined without ambiguity

and understanding deviation. In addition, the enumerated

functions above, not only in Onboard but also in Control-

Center, do not mean that they are exhaustive, just some

main functions. For example, the emergency treatments

for earthquake, etc. are important to railway system, but

don’t be analyzed in this paper. In the next section, the

specification will be validated.

4. Model Validation

After completing the formal specification by VDM++,

just as any piece of software, the formal specification may

contain errors also, mainly about internal consistency and

satisfiability. The former which is the correctness of the

specification itself, can be found purely by analysis of the

model, and will be discussed in section 4.1; and the later

who increases the confidence of the specification, can only

be checked when more information than just the model is

given, and will be discussed in section 4.2.

4.1 Internal consistency proof

The syntax error can be checked by tool easily, however,

how to check whether there is an error or contradiction hid-

den in the specification, is a key problem. The process is

called internal consistency proof, which is an unproven the-

orem stating that a certain property, namely integrity prop-

erty or proof obligation, must hold in order for the

specification to be consistent [7]. If the integrity properties

can be proved, then the part referred to in the specification

is consistent, otherwise it is inconsistent. That is to say, if all

of the integrity properties are demonstrated true, there will

be internal consistency and no runtime errors associated

with that integrity check. Take an example showed in Fig. 4,

where (a) is the definition of function Minimum in class

Onboard; (b) is the corresponding proof obligation in the

form of VDM++ predicates, which states that under given

conditions, the existence of maximum must be proved. This

Fig. 4 Proof obligation for Minimum

− 70 −

Guo Xie, Xinhong Hei, Hiroshi Mochizuki, Sei Takahashi and Hideo Nakamura / IJR, 5(2), 65-70, 2012

proof is simple, but most of them are time consuming.

The proof of internal consistence includes four steps: (1)

Obtain the proof obligations. In this step, they are gener-

ated by integrity examiner of VDMTools automatically.

The integrity examiner analyses the specification, looking

for places where runtime errors may potentially occur and

generates a series of integrity properties. Then the proof

obligations are rewritten in a independent file manually; (2)

Translate the concrete system specification and proof obli-

gations to VDM Abstract Syntax Tree (VDM AST) auto-

matically by Overture parser [8]; (3) Translate VDM AST

to HOL model according to the work by S. Vermolen [9];

and (4) Prove the concrete HOL model by theorem prover

HOL4 manually. In this process, inconsistencies resulted

from wrong type definitions were founded and corrected.

In all, 9141 proof obligations are discharged.

4.2 Satisfiability checking

By the work above, we can guarantee that all functions

are defined precisely with well internal consistency. How-

ever, how to ensure the satisfiability, i.e. satisfying actual

requirements, is another key point. As you know, if the

result of the specification definition can be predicted

before implementation, the reliability and satisfiability of

the specification will increase greatly. Unfortunately, there

is no formal way to achieve this until now. In our project,

we check the satisfiability by executing the specification,

and then compare the actual output with the expected

value against the corresponding input.

As to the specific approach, the satisfiability of specifica-

tion is realized by systematic testing using the facility of

VDMTools. Specifically, there are three steps involved in

this procedure: (1) Prepare a test coverage file manually, i.e.

testing cases, which contains information about the specifica-

tion`s structure but with none of the definitions covered yet;

(2) Test the specification by making the interpreter execute

calls to the constructs in the specification automatically; and

(3) Check the test coverage files manually, including the

specification and the coverage information correspondingly,

which generated by pretty printer. In this process, by 2826

testing cases, 90% specifications are executed, and the

remaining 10% can only be tested after connecting hardware.

5. Conclusion and Future Work

This paper introduced ATPB system briefly, and then for-

malized the specification by VDM++ formally; at last, the

formal specification is validated from two aspects: internal

consistency by discharging proof obligations, and satisfiabil-

ity by systematic testing. The former is a proof approach

and is complete. Though the latter is a testing way, even if

some flaws or defects are detected, it is far more convenient

to correct them just by modifying specification than pro-

gram after implementation. Through the work in this paper,

we can ensure that if the ATPB software is designed strictly

in accordance with this formal specification, it will be no

runtime error, and satisfy the actual requirements highly.

Lastly, there are two research projects in future, firstly,

from the view of the improvement of the analysis

approach, how to verify the completeness of formal speci-

fication, i.e. all functions are contained in the model, is

still a challenge; and then though as mentioned above, the

validation of satisfiability by testing is effective, a formal

verification is necessary. Secondly, form the view of

ATPB, a simulator will be implemented, and more verifi-

cation is indispensable before actual implementation.

1. Bowen and V. Stavridou (1993). “Safety-critical systems:

formal methods and standards,” Software Engineering Jour-

nal, Vol. 8, pp. 189-209.

2. Knight, J.C. (2002). “Safety critical systems: challenges and

directions,” Proceedings of the 24th International Confer-

ence on Software Engineering, pp. 547-550.

3. Badeau, F. and Amelot, A. (2005). “Using B as a high level

programming language in an industrial project: Roissy

VAL,” ZB, H. Treharne, S. King, M. C. Henson, and S. A.

Schneider, Eds. Lecture Notes in Computer Science, Vol.

3455, Springer, Berlin, Heidelberg, pp. 334-354.

4. N. Terada and M. Fukuda (2002). “Application of formal

methods to the railway signalling systems,” Quarterly Report

of RTRI, Vol. 43, No. 4 pp. 169-174.

5. X. Hei, S. Takahashi and H. Nakamura (2009). “Modelling

and analyzing component-based distributed railway inter-

locking system with petri nets,” IEEJ Transactions on Industry,

Sec. D, Vol. 129 , No. 5, pp. 455-46.

6. J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat and M. Ver-

hoef (2005). “Validated Designs for Object-oriented Sys-

tems,” Springer, New York.

7. B. K. Aichernig and P. G. Larson (1997). “A proof obliga-

tion generator for VDM-SL,” FME’97: Industrial Applica-

tions and Strengthened Foundations of Formal Methods,

volume 1313 of Lecture Notes in Computer Science.

8. P. G. Larsen, J. Fitzgerald, S. Wolff, N. Battle, K. Lausdahl,

A.Ribeiro and K. Pierce (2010). “Tutorial for overture/

VDM++,” Overture – Open-source Tools for Formal Model-

ling TR-2010-03.

9. S. Vermolen, J. Hooman and P. G. Larsen (2010). “Automat-

ing consistency proofs of VDM++ models using HOL,” Pro-

ceedings of the 25th Symposium On Applied Computing

(SAC 2010), (Sierre, Switzerland), ACM, March.

Received(April 26, 2012), Accepted(June 18, 2012)

