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Abstract. This paper presents an optimum design of step-stress partially 

accelerated life test (PALT) plan which allows the test condition to be changed 

from use to accelerated condition on the occurrence of fixed number of failures. 

Various life distribution models such as exponential, Weibull, log-logistic, Burr 

type-Xii, etc have been used in the literature to analyze the PALT data. The need 

of different life distribution models is necessitated as in the presence of a limited 

source of data as typically occurs with modern devices having high reliability, the 

use of correct life distribution model helps in preventing the choice of unnecessary 

and expensive planned replacements. Truncated distributions arise when sample 

selection is not possible in some sub-region of sample space. In this paper it is 

assumed that the lifetimes of the items follow Truncated Logistic distribution 

truncated at point zero since time to failure of an item cannot be negative. 

Optimum step-stress PALT plan that finds the optimal proportion of units failed at 

normal use condition is determined by using the D-optimality criterion. The 

method developed has been explained using a numerical example. Sensitivity 

analysis and comparative study have also been carried out. 
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NOTATIONS 

 

lq  Proportion of units failed at use condition 

lnq  Number of units failed at use condition 

rq  Proportion of units failed before censoring 

rnq  Number of units failed before censoring 

r lq q  Proportion of units failed at accelerated condition 
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r ln(q q )  Number of units failed at accelerated condition 

r1 q  Proportion of censored units 

rn(1 q )  Number of censored units 

n Total number of test items in a PALT ( r rn nq n(1 q )   ) 

  Acceleration factor (> 1) 

                 Location parameter ( )  

  Scale parameter ( 0)   

T Lifetime of an item at use condition  

U Total lifetime of an item in a step PALT 

U(i) Observed value of the total lifetime U(i) of item i, i=1, 2... n 

Pu Probability of an item fails at use condition is, 

 Pu = (nq )l
(u )/ /

.(1/ A)(1/ (1 e ) 1/ (1 e ))
        

Pa Probability of an item fails at accelerated condition is, 

 Pa = (nq ) (nq ) (nq ) (nq )l r l l
(u (u u ) ))/ (u )/

 (1/ A)(1/ (1 e ) 1/ (1 e ))
       

    

 where, /A 1/ (1 e ).    

Pc = u a1 (P P )  , that is, Pc = (nq ) (nq ) (nq )l r l
(u (u u ) ))/ /

 1 (1/ A)(1/ (1 e ) 1/ (1 e ))
           

F(t) Cumulative distribution function (cdf) 

f (t) Probability density function (pdf) 

R (t) Reliability functions at time‘t’ at use condition 

h (t) Hazard (failure) rate at time‘t’ at use condition   

1i, 2i Indicator functions: 

1i = l(i) (nq ) l  1, u u , i 1, 2, ......, nq
.

0, other wise           

 



   

 

2i = 
l r(nq ) (nq ) l r  1,u u u , i (nq 1),...., nq(i)

 .
0, other wise              

   



 

l l r(1) (2) (nq ) (nq 1) (nq )u u ... u u ... u     
     

Ordered failure times 

^       Maximum likelihood estimate 
 
 

1.  INTRODUCTION 

 

In industrial experiments, the test of products with high reliability under normal use 

condition often requires a substantially long period of time and number of failures would 

be scarce. Also, this requires lots of time and money. So, to overcome such problems, 

accelerated life testing and partially accelerated life testing have been widely used to 

deliver products with higher reliability at lower cost and in shorter time. In an ALT, 

experimental units are subject to more severe test stresses than usual to reduce the time to 

failure and in a PALT at both use and accelerated conditions. The stresses may be in the 

form of temperature, voltage, pressure, vibration, cycling rate, humidity, load, etc.. Data 
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collected at accelerated condition is then extrapolated through a statistical model to 

estimate the lifetime of a test unit at normal use condition. 

The ALT requires that the acceleration factor is known or the mathematical model 

relating the lifetime of the unit and the stress is known or can be assumed. Sometimes, it is 

very hard to assume these relationships. Consequently, ALT data cannot be extrapolated 

to use conditions. So, in such cases PALT is a more suitable test to be performed for 

which units are subject to both normal and accelerated conditions (see Abdel – Ghally et 

al. (2002)). Bhattacharyya and Soejoeti (1989) have termed ALT as fully accelerated life 

test. 

Under step-stress PALT, a test item is first run at normal use condition and if it does 

not fail then, it is run at accelerated condition until failure occurs or the observation is 

censored. The objective of such experiment is to collect more failure-time data in a limited 

time without necessarily using a high stress to all test items.  

Censoring is very common in life testing. It is used to reduce the amount of testing 

time in PALT plans. Commonly used censoring schemes involve type-I censoring (time-

censored) and type-II censoring (failure-censored). In the former, the test runs for a pre-

specified time and in later, the test stops at the occurrence of predetermined number of 

failures. 

DeGroot and Goel (1979) have considered a PALT and estimated the parameters of 

the exponential distribution and the acceleration factor using the Bayesian approach. Baiet 

al. (1993) have used the maximum likelihood method to estimate the scale parameter and 

the acceleration factor for the log normally distributed lifetime, using type-I censored data. 

Ismail (2004) has used maximum likelihood and Bayesian methods for estimating the 

acceleration factor and the parameters of Pareto distribution of the second kind. 

Bhattacharyya and Soejoeti (1989) have estimated the parameters of the Weibull 

distribution and acceleration factor using maximum likelihood method. Bai and Chung 

(1992) have considered optimal designs for both step and constant PALTs under type-I 

censoring. Abdel-Ghani (2004) has estimated the parameters of log-logistic distribution 

under step-stress PALT. Abd-Elfattah et al. (2008) have estimated the parameters of burr 

type-XII distribution and acceleration factor using maximum likelihood method in time-

censored step-stress PALT. Aly and Ismail (2008) have estimated the parameters of the 

Weibull distribution and acceleration factor using maximum likelihood method in time-

censored step-stress PALT. Chung et al. (2006) have considered the design of the 

acceptance sampling plans based on failure-censored step-stress ALTs for items having 

Weibull life distribution. Srivastava and Mittal (2010) have obtained optimum step-stress 

PALT for the truncated logistic distribution with failure censored data under the 

assumption that number of failures is known. They have estimated failure time of the last 

unit using 1

(r)E[X ] F (r / (n 1)),  where, r is total number of failures before censoring 

(see David Pg 80 (2003)). In the present paper, it has been assumed that proportion of 

units which will fail before censoring, is known, which is a more realistic assumption than 

the former one. 

The use of a correct life distribution model especially in the presence of limited 

source of data – as typically occurs with modern devices, having high reliability, helps in 

preventing the choice of unnecessary and expensive planned replacements. Some 

commonly used life distribution models in PALT are exponential, weibull, normal, 
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lognormal, burr type-XII, Gompertz and Pareto distribution of second kind. However, the 

failure rate of exponential distribution is constant which is hardly realized in practice. For 

Weibull distribution, the failure rate 
1h(x) x ,x 0, 0, 0          is constant for 1  , 

and for 1 and 1     it leads to two unrealistic situations: 

 For 1  , h(x) 0 as x 0  thereby failing to account for failures at the start of 

experimentation, and h(x)  as x  and is therefore unbounded. 

 For 1, h(x)  as x 0     and h(x)0 as x . 

For Burr type-XII distribution, the failure rate 1h(x) (k x ) / (1 x ),   x 0, 0,k 0         leads 

to following unrealistic situations: 

 For 0 1,   h(x) 0 as x  and is a constant at x 0 . 

 For 1,  h(x) 0 as x  and is a constant at x 0 . 

 For 1,  h(x) 0 as x  and at x 0 . 

For k = 1, the distribution reduces to log-logistic distribution. 

For Pareto distribution of second kind, the failure rate h(x) (( 1) ) / (1 x),  x 0       is 

constant, i.e., ( 1)    at x 0  and h(x) 0 as x  . 

For Gompertz distribution, the failure rate 
xh(x) e ,  x 0, 0, 0        is constant, i.e., 

 at x 0 and h(x)  as x  , which is therefore unbounded. 

Further, the failure rate of a lognormal life distribution starts at zero, rises to a peak, and 

then asymptotically approaches zero which is again unrealistic. 

Truncated distributions arise when sample selection is not possible in some sub-

region of the sample space. The logistic distribution is inappropriate in modeling lifetime 

data because the left hand limit of the distribution extends to negative infinity. This could 

conceivably result in modeling negative times-to-failures. This has necessitated the use of 

truncated logistic distribution truncated at point zero. The failure rate of truncated logistic 

distribution truncated at point zero, is increasing and is more realistically bounded below 

and above by a non-zero finite quantity. 

In this paper, we have proposed the optimal plan for failure-censored step-stress 

PALT for truncated logistic distribution. The optimal proportion of units failed at use 

condition for the step PALT is determined using the D-optimality criterion. 

The paper is organized as follows: Maximum likelihood estimates of the acceleration 

factor and parameters of the model have been obtained. The optimal proportion of units 

failed at use condition is found. The method developed has been illustrated using an 

example. Confidence intervals involving design parameters have been obtained. 

Sensitivity analysis and comparative study have also been carried out. 

 

 

2. THE MODEL 

 

2.1. Basic Assumptions 

1) The lifetime of an item tested at both use and at accelerated condition follows truncated 

logistic distribution.  

2) The lifetimes of test items are independent and identically distributed random variables. 
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We are dealing with non-repairable units . For a non-repairable unit there is no repair 

once the unit fails, and therefore the unit is discarded. Since the failure of one unit does 

not affect the performance of any other similar unit, the assumption that different units 

have lifetimes that are independent is reasonable. Also if many copies of a unit were 

produced by the same manufacturing system, then it is reasonable to assume that the 

system lifetimes have the same distribution. These two assumptions can be combined 

into one statement that says lifetimes are independent and identically distributed. 

 

2.2. Test Procedure 
1) All 'n' items are first run simultaneously at use condition.  

2) When nql items have failed at use condition, the surviving n(1 - ql) items are put to test 

at accelerated condition. The test is terminated when n(qr - ql) units have failed. 

 

2.3. Truncated Logistic Distribution 
The cumulative distribution function of Truncated Logistic distribution truncated at 

point zero is given by: 

 (2.1) 

(see Mood et al. (1974))  
Its pdf, reliability function and hazard function are given by 

f(u) = (u )/ (u )/ 2e / (A (1 e ) ),0 u ,  0,   ,                         (2.2)  

R(u) = (u )/ (u )/e / (A(1 e )),0 u ,  0,   ,                          
(2.3)

 

      
(u )/h(u) 1/ ( (1 e )),0 u ,  0,  ,           respectively.             (2.4) 

The hazard function in (2.4) is an increasing function of u, and is bounded by 
/1/  (1 e )   and1/  . 

 

 

3. MODEL FORMULATION 
 

In step-stress PALT, if the item has not failed by some pre-specified time,  , the test 

is switched to the higher level of stress and it is continued until items fail. The effect of 

this switch is to multiply the remaining lifetime of the item by the inverse of the 

acceleration factor ‘ ’. In this case, switching to the higher stress level will shorten the 

life of the test item. Since we are dealing with failure censoring therefore,  , is unknown 

and is estimated by 
l

th
qn order statistic, 

l(nq )u . Then, the total lifetime U of an item is 

defined as  

U = l

l l

(nq )

1
(nq ) (nq )

T               , T u

u (T u ), otherwise




 

 

Thus, the cdf of total lifetime U of an item is given by:  
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l

(nq ) (nq )l l
l

(u )/ /
(nq )

(u (u u ) )/ /
(nq )

(1/ A)(1/ (1 e ) 1/ (1 e )),0 u u , 0,
F(u)

(1/ A)(1/ (1 e ) 1/ (1 e )),u u, 0, ,

    

      

            


 
          

           (3.1) 

and the probability density function of total lifetime U of an item is given by:  

l

(nq )l

(u )/ (u )/ 2
(nq )

(u (

0                                                                                              ,u 0

f (u) e / (A (1 e ) )                                             ,0 u u

e

     

 



    

 (nq ) (nq ) (nq )l l l
l

u u ) )/ (u (u u ) )/ 2
(nq )/ (A (1 e ) ) ,u u

       






   


                 (3.2) 

 

3.1. Log likelihood function and Parameter Estimation 

Maximum likelihood method has been used to estimate the model parameters , , 

and acceleration factor, , from the test data. The likelihood function based on 

l l l l r r(1) 11 (nq ) 1nq (nq 1) 2(nq 1) (nq ) 2nq((u ; ),...,(u ; ),(u ; ),...,(u ; )) is      

1 i 2 i 1 i 2 i
r

n n

i (i) 1i 2i 1 (i) 2 (i) (nq )

i 1 i 1

L( , , ) L ( , , ,u , , ) (f (u )) (f (u )) (R(u ))
   

 

            

(i) (i) 1i

n
(u )/ (u )/ 2

i 1

(e / (A (1 e ) ))
      



  
 

(3.3) 

where, 1i 1i1   , 2i 2i1    

On maximizing the natural logarithm of the above likelihood function, the maximum 

likelihood estimates of ,  and  can be obtained.  

After taking the natural logarithm of the above likelihood function, it can be written 

in the following form as:  

 
(3.4) 
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The first order partial derivates of equation (3.4) with respect to ,  and  are given by:

l r l

(nq ) (i) (nq ) (nq ) (i) (nq )l l l l
l

(nq ) (nq )l r

n n

r l 2i (i) (nq ) 1i 2i (nq ) (nq )

i 1 i 1

n
(u (u u ) )/ (u (u u ) )/

2i (i) (nq )

i 1

(u (u

1i 2i

ln L( , , ) / (nq nq ) / ((u u ) / ) ((u u ) / )

2 ((u u ) / )(e / (1 e ))

(e

 

         



 

                

    

  

 



(nq ) (nq ) (nq ) (nq )l l r l

r l

n
u ) )/ (u (u u ) )/

i 1

(nq ) (nq )

/ (1 e ))

((u u ) / ),

       





  



(i) (i)

(nq ) (i) (nq ) (nq ) (i) (nq )l l l l

n n n
/ /

1i 2i 1i 2i

i 1 i 1 i 1

n
(u )/ (u )/

1i

i 1

(u (u u ) )/ (u (u u ) )/

2i

ln L( , , ) / (ne ) / ( (1 e )) (1 / ) (1 / ) (1 / )

2 (e / ( (1 e )))

(2 / ) (e / (1 e ))

   

  

     



         

                  

   

   

  



(nq ) (nq ) (nq ) (nq ) (nq ) (nq )l r l l r l

n

i 1

n
(u (u u ) )/ (u (u u ) )/

1i 2i

i 1

(e / ( (1 e ))),



         



    





 

l l

(i) (i)

l r l

n
/ 2 / 2

2i (nq ) (i) (nq )

i 1

n n
(u )/ (u )/2 2

r 1i (i) 1i (i)

i 1 i 1

2
1i 2i (nq ) (nq ) (nq )

i

ln L( , , ) / (n e ) / ( (1 e )) ((u (u u ) ) / )

nq / ((u ) / ) 2 ((u ) / )(e / (1 e ))

((u (u u ) ) / )

   



     

 



               

          

       



 

n

1



 

l l

(nq ) (i) (nq ) (nq ) (i) (nq )l l l l

l r l

(nq ) (nq ) (nq ) (nq ) (nq ) (l r l l r

n
2

2i (nq ) (i) (nq )

i 1

(u (u u ) )/ (u (u u ) )/

2
(nq ) (nq ) (nq )

(u (u u ) )/ (u (u u

1i 2i

2 ((u (u u ) ) / )

(e / (1 e ))

((u (u u ) ) / )

(e / (1 e



         

       

     



    

  



nq )l
n

) )/

i 1

))
 





 

 

On summing these partial derivatives and equating them to zero, likelihood equations 

are obtained. Since, the closed form solutions of above likelihood equations are very hard 

to obtain, so further numerical treatment is required to obtain the MLEs of β ,  and   . 

 

3.2. Fisher information matrix 

It is the 3×3 symmetric matrix of expectation of negative second order partial 

derivatives of the log likelihood function with respect to β, µ, and σ. 
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2 2 2

2

2 2 2

2

2

ln L( , , ) ln L( , , ) ln L( , , )
E  E  E  

ln L( , , ) ln L( , , ) ln L( , , )
F( , , ) E  E  E  

ln L( , , )
E  E  

                
       

           

                
           

           

     
  

  

2 2

2

 .

ln L( , , ) ln L( , , )
E  

 
 
 
 
 
 
 
              
         

             (3.5) 

where the values of these elements are given in Appendix A. 

 

3.3 Confidence intervals 

The ML estimates ˆ ˆ,   and ̂  are approximately normally distributed in large 

samples, therefore ( ˆ ˆ ˆ, ,   ) ~ N (( , ,   ), F
1

). The two-sided 100(1   ) % approximate 

confidence interval for the parameter μ is given by /2 ˆˆ ˆz var( )   , where /2z is the (1 

α/2)
th 

quantile of a standard normal distribution , and ˆ ˆvar( )  is obtained by taking 

square root of  first diagonal element of F
1

. Similarly two-sided 100(1   ) % 

approximate confidence interval for the parameter σ and acceleration factor, β, can be 

obtained. 

The main disadvantage of approximate 100(1– )% confidence interval is that it may 

yield negative lower bound though the parameter takes only positive values. In such a case 

the negative value is replaced by zero. Alternatively, Meeker and Escobar (1998) have 

suggested the use of a log transformation to obtain approximate confidence intervals for 

the parameters that take positive values. Thus, the approximate two sided 100(1– )% 

confidence intervals for σ and acceleration factor β are  

/2 /2 
ˆ ˆˆ ˆ ˆ ˆvar( ) var( )

ˆ
[ z / ] [z / ]

ˆ( e , e ),    



  

and 

/2 /2 
ˆ ˆ ˆ ˆ[ z / ] [z / ]ˆ( e ,

ˆ ˆvar( ) va )ˆ e ),
r( 

    
  

 

respectively. 

 

3.4. Optimal Test Plan 

The optimal ‘ lq ’ is found by using D-optimality criterion which consists in 

minimizing the generalized asymptotic variance of MLEs of the model parameters and the 

acceleration factor, that is minimizing the reciprocal of the determinant of Fisher 

information matrix. N Minimize option of Mathematica 6 has been used to formulate 

optimal plan. 
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4. NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 
 

4.1  An Example 

Assuming rn 36,  3.5,  3,  2,  q 0.8        , the optimal value of ‘ lq ’ is given 

by *
lq  =  0.537308. The data in Table 4.1 gives 36 simulated observations based on data 

rn 36,  3.5,  3,  2,  q 0.8         and *
lq =  0.537308. Thus, the total number of units 

tested at use condition lnq  = 19 and at accelerated condition r lnq nq = 10. The MLEs 

of model parameters and acceleration factorμ, σ and β obtained by using NMaximize 

option of Mathematica 6 are: ̂ =2.32716, ̂ =2.37193 and ̂=2.28489.  

The inverse of observed Fisher information matrix 1F̂   is given as: 
 

1

1.34435 1.34934 1.09024

F̂ 1.34934 3.93506 2.04478

1.09024 2.04478 1.42118



 
 

   
  

. 

The estimated variances of the estimates of ˆ 늿,  ,  and     are given by: ˆˆvar( ) 1.34435 ,

ˆ ˆvar( ) 3.93506 , ˆ ˆvar( ) 1.42118.

 ( rn 36,  3.5,  3,  2,  q 0.8        and *
lq  =  0.537308, rn(1 q ) 7  ). 

 
TABLE 4.1. Simple step-stress simulated data 

Step-stress Failure times 

Use 

condition 

0.825647, 1.27427, 3.52221, 1.68926, 3.63412, 2.67884, 

0.509556, 0.876301, 0.928494, 3.12768, 2.87813, 0.384488, 

1.66669, 1.44316, 3.43329, 1.75242, 3.13934, 1.5005, 3.8933. 

Accelerated 

condition 

3.92978, 4.48351, 3.98271, 4.72104, 5.0921, 4.26577, 4.56169, 

4.84164, 4.27131, 4.04944. 

 

To find the standard errors of ˆ ˆ ˆ,  ,  and    , we take the square root of the diagonal 

elements of 1F̂  , 95% confidence intervals for the acceleration factor and model 

parameters using 0.025 0.025
ˆ ˆˆ ˆ ˆ ˆ z var( ) /  z var( ) /

0.025
ˆ ˆˆ ˆ ˆe ,  z var( )  and e

     
      are 

respectively 

1 <  6.17751 , 1.56089  6.21521  and 0.885686   6.35219 . 

Since, the range of parameter ‘  ’ is greater than one therefore, lower limit of its 

confidence interval cannot be less than one. So, we replace the lower limit by one 

whenever the lower limit comes out to be less than one. 

Table 4.2 gives the optimal value of ‘ lq ’ for various sets of parametric values. 
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TABLE 4.2. Optimum failure censored step-stress PALT for n 36.  
 

rq        *
lq  

0.3 

2.5 3 2 0.186342 

3 3 2 0.186342 

3.5 3 2 0.186342 

4 3 2 0.186342 

3.5 2 2 0.190166 

3.5 2.5 2 0.188581 

3.5 3.5 2 0.183423 

3.5 3 1 0.158032 

3.5 3 1.5 0.179808 

3.5 3 2.5 0.188949 

0.4 

2.5 3 2 0.259427 

3 3 2 0.259427 

3.5 3 2 0.259427 

4 3 2 0.259427 

3.5 2 2 0.266285 

3.5 2.5 2 0.263185 

3.5 3.5 2 0.255025 

3.5 3 1 0.225038 

3.5 3 1.5 0.250013 

3.5 3 2.5 0.263857 

0.5 

2.5 3 2 0.330905 

3 3 2 0.330905 

3.5 3 2 0.330905 

4 3 2 0.330905 

3.5 2 2 0.340668 

3.5 2.5 2 0.336119 

3.5 3.5 2 0.325077 

3.5 3 1 0.289845 

3.5 3 1.5 0.318713 

3.5 3 2.5 0.337084 

0.6 

2.5 3 2 0.401011 

3 3 2 0.401012 

3.5 3 2 0.401012 

4 3 2 0.401012 

3.5 2 2 0.41364 

3.5 2.5 2 0.40766 

3.5 3.5 2 0.393791 

3.5 3 1 0.35306 

3.5 3 1.5 0.386092 

3.5 3 2.5 0.408886 
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0.7 

2.5 3 2 0.470086 

3 3 2 0.47009 

3.5 3 2 0.470076 

4 3 2 0.470065 

3.5 2 2 0.485497 

3.5 2.5 2 0.478096 

3.5 3.5 2 0.461425 

3.5 3 1 0.415176 

3.5 3 1.5 0.452428 

3.5 3 2.5 0.479954 

0.8 

2.5 3 2 0.537878 

3 3 2 0.537155 

3.5 3 2 0.537308 

4 3 2 0.537544 

3.5 2 2 0.556477 

3.5 2.5 2 0.547546 

3.5 3.5 2 0.527894 

3.5 3 1 0.476486 

3.5 3 1.5 0.519722 

3.5 3 2.5 0.548966 

0.9 

2.5 3 2 0.59393 

3 3 2 0.609393 

3.5 3 2 0.616109 

4 3 2 0.617383 

3.5 2 2 0.627229 

3.5 2.5 2 0.621397 

3.5 3.5 2 0.591588 

3.5 3 1 0.537065 

3.5 3 1.5 0.583533 

3.5 3 2.5 0.562226 

 

 

4.2  Sensitivity analysis 

To use an optimum test plan, one needs estimates of the design parameters ,  and    . 

These estimates sometimes may significantly affect the values of the resulting decision 

variables; therefore, their incorrect choice may give a poor estimate of the quantile at 

design constant-stress. Hence, it is important to conduct sensitivity analysis to evaluate the 

robustness of the resulting ALT plan. 

The percentage deviations of the optimal settings are measured by 
** * *PD (| Z Z | /Z ) 100,    where 

*Z  is the setting obtained with the given design 

parameters, and 
**Z  is the one obtained when the parameter is misspecified. Table 4.3 

shows the optimal test plans for various deviations from the design parameter estimates. 
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The results show that the optimal setting of Z is robust to the deviations of those baseline 

parameter estimates. 

 

TABLE 4.3.Sensitivity analysis with *
lq 0.537308  

Parameter % Change 
lq  **Z (PD%)  

̂  +5% 0.537394 0.0159323 

̂  -5% 0.537228 0.0149052 

̂  +5% 0.534043 0.607694 

̂  -5% 0.540533 0.600216 

̂  +5% 0.540506 0.595246 

̂  -5% 0.534825 0.462128 

 

 

5. COMPARATIVE STUDY 
 

In this section, the proposed step-stress PALT model have been compared with the 

one designed by Abdel-Ghaly (2002) in terms of likelihood functions using the 

hypothetical failure time data set under step-stress PALT with type-II censoring given in 

Table 4.2.  

 

Table 5.1.  Comparative study of step-stress PALT models 

PALT model Log-likelihood function 

Proposed Model  -62.3714 

Abdel-Ghaly (2002) model -63.1796 

 

Table 5.1 shows that the proposed model performs better than the other step-stress PALT 

models existing in the literature for the given data set. 

 

 

6. CONCLUDING REMARKS 
 

In this paper, we have obtained an optimum failure-censored step-stress PALT for 

the truncated logistic life distribution using D-optimality criterion. The truncated logistic 

life distribution can be effectively used in reliability applications as the failure rate of 

truncated logistic, truncated at point zero, is increasing and is more realistically bounded 

below and above by a non zero finite quantity. We have also obtained confidence intervals 

involving acceleration factor and parameters of the model. The procedure developed has 

been explained using an example and sensitivity analysis carried out. The result of 

sensitivity analysis shows that optimum plan is robust. Comparative study has also been 

done with respect to previously studied step-stress PALT models under type-II censoring 

which shows that proposed model performs better than any other step-stress PALT models 

with type-II censoring existing in the literature for the given data set. 
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APPENDIX 

 

The conditional expectations of negative of second order derivatives given 

r l(nq ) (nq )u y and u x  are:  

r l

2 2 2 2 2
(nq ) (nq ) a u a

y
3 2 2

x

E[ ln L( , , ) / | u y,u x] (nP ) / ((n(1 P P )) / )(y x) K(y)

((2n ) / (A )) (u x) (K(u)) du,

             

   

 

r l

2 2
(nq ) (nq ) u a

y
3 2

x

E[ ln L( , , ) /  | u y,u x] ((n(1 P P )) / )(y x)K(y)

((2n ) / (A )) (u x)(K(u)) du,

             

   

r l

2 2
(nq ) (nq ) u a

y
3

x

E[ ln L( , , ) /  | u y,u x] ((n(1 P P )) / )(y x)(1 B(y))

((n ) / (A )) (u x)K(u)(1 2B(u))du,

              

    
 

r l

2 2 2 2
(nq ) (nq ) u aE[ ln L( , , ) / | u y,u x] (ng(2 )) / ((n(1 P P )) / )K(y)              

                                                      

yx
3 2 3 2

0 x

((2n) / (A )) (g(u)) du ((2n ) / (A )) (K(u)) du,       

r l

2 2 2 3
(nq ) (nq ) u a

3
u a

x
4

0

y
4

x

E[ ln L( , , ) / | u y,u x] (n(P P )) / (2n M(2 )) /

((2n(1 P P )) / )(x (y x) )(1 H(y))

((2n) / (A )) (u )g(u)(1 2M(u))du

((2n ) / (A )) (x (u x) )K(u)(1 2H(u))du,

              

        

   

       





 

where,  

K(u) =  (x (u x) )/ (x (u x) )/ 2e / (1 e )           

B(y) = (x (u x) )/((1 e ) ((x (u x) ) / ))K(u)           

g(u) = (u )/ (u )/ 2e / (1 e )       
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Q(u) = (u )/((1 e ) ((u ) / ))g(u)       

M(u) = (u )/((1 e ) ((u ) / (2 )))g(u)       

H(y) = (x (u x) )/((1 e ) ((x (u x) ) / (2 )))K(u)           
 

The elements of Fisher Information matrix are obtained by taking expectation of 

conditional expectations obtained in (A1) – (A6) and using the fact that if 

1 2 r nY ,Y ,...Y ,...Y is a random sample of size n from a population with absolutely 

continuous distribution function F(x) , satisfying F(0) 0,  and 
(1) (2) (r) (n)Y Y ... Y ... Y    is 

the associated ordered sample, then expectation of some function t(x, y), 1 r s n   of r
th
 

and s
th
 order statistic is  

y
r 1 s r 1 n s

(r) (s)

0 0

E[t(Y ,Y )] n!/ ((r 1)!(s r 1)!(n s)!) t(x,y)F(x) f (x)(F(y) F(x)) f (y)(1 F(y)) dxdy,


          

which for the sake of convenience is re-written as 
y

(r) (s)

0 0

E[t(Y ,Y )] a t(x,y)zdxdy


    

where,  

a n!/ ((r 1)!(s r 1)!(n s)!)      

and 
r 1 s r 1 n sz F(x) f (x)(F(y) F(x)) f (y)(1 F(y))       

(nq ) (nq )l l

(nq ) (nq ) (nq ) (nq )l l l l

(x )/ / r 1 (x )/ (x )/ 2

(u (y u ) )/ (x )/ s r 1

(u (y u ) )/ (u (y u ) )/ 2

((1/ A)(1/ (1 e ) 1/ (1 e ))) e / (A (1 e ) )

((1/ A)(1/ (1 e ) 1/ (1 e )))

e / (A (1 e ) )

(1 (1/ A)

           

         

         

     

  

  

 (nq ) (nq )l l
(u (y u ) )/ / n s(1/ (1 e ) 1/ (1 e ))) .

         

 

Thus, 

r l

2 2 2 2
(nq ) (nq )

y
2 2 2

a u a

0 0

y
3 2 2

x

E[ ln L( , , ) / ] E[E[ ln L( , , ) / | u y,u x]]

a ((nP ) / ((n(1 P P )) / )(y x) K(y)

((2n ) / (A )) (u x) (K(u)) du)zdxdy,                                       



            

      

   

 


         (A1) 

r l

2 2
(nq ) (nq )

y
2

u a

0 0

y
3 2

x

E[ ln L( , , ) /  ] E[E[ ln L( , , ) /  | u y,u x]]

a ( ((n(1 P P )) / )(y x)K(y)

((2n ) / (A )) (u x)(K(u)) du)zdxdy,         



              

     

   

 



 

(A2) 
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                     (A3) 

          (A4) 

                         (A5) 

            (A6) 
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