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Low-Cost SVM-DTC Strategy of Induction Machine Drives Using 

Single DC-link Current Sensor 
 

 

Wei Wang*, Ming Cheng*, Wei Hua*, Shichuan Ding*, Ying Zhu*, Wenxiang Zhao** 
 

 

Abstract – In conventional direct torque control (DTC) using space-vector modulation 

(SVM) of induction machine (IM) drives, at least three current sensors are needed. In this 

paper, a low-cost SVM-DTC strategy is proposed, in which only a single current sensor is 

used. The position of the voltage space vector is divided into two areas: effective and non-

effective area. If it is located in the non-effective area, the voltage space vector will be shifted 

into the effective area with minimum distortion. Further, the switching frequency remains 

constant. The simulation is carried out on a MATLAB/Simulink platform and the simulated 

results verify the effectiveness of the proposed strategy. 
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1. Introduction 

 

Direct torque control (DTC) was proposed in the mid 

1980s [1]-[2]. Due to the advantages of its simple structure, 

quick torque response and robustness, DTC has received a 

lot of attention in literature [3]-[8] and has been widely 

used in fields requiring fast torque response, such as 

electric traction drives of rail transit. In nature, DTC 

accomplishes the closed-loop control of the stator flux 

magnitude and the electromagnetic torque without current 

regulators and rotor position information. As is known, the 

conventional DTC needs the signals of phase currents and 

dc-link voltage, together with the states of the inverter 

switches. In other words, two current sensors and one 

voltage sensor are necessary to attain the realization of the 

conventional DTC. Additionally, one extra current sensor is 

always mounted in the dc-link for over current protection. 

The conventional DTC scheme is shown in Fig. 1(a). 

However, the use of sensors tends to degrade the reliability 

of the drive system; on the other hand, the cost reduction is 

one of various efforts for widening the applications of 

motor drives. Therefore, many efforts are made to minimize 

the number of current sensors to control electric machines. 

In [9]-[13], several current-sensorless methods are 

presented. Although the cost of corresponding drive 

systems are reduced significantly, these current-sensorless 

methods are based on accurate electric machine models, 

which weaken the robustness of corresponding drive 

systems. Since the dc-link current reflects one of the three 

phase currents if the inverter uses the active voltage space 

vectors, several single-current-based methods of motor 

drives are presented [14]-[18], and the most typical drive 

system is shown in Fig. 1(b). In [15], a DTC scheme using 

a single dc-link current sensor is introduced. However, the 

scheme works well only when the switching frequency of 

the inverter is high. In [16], another single-current-based 

DTC scheme is presented: firstly, phase currents are 

estimated by the model of an induction motor; then, the 

estimated phase currents are adjusted by the sensed dc-link 

current. In [18], the space vector PWM algorithm of the 

permanent magnet synchronous motor servo drives is 

accomplished by a single dc-link current sensor. 

The purpose of this paper is to propose a low-cost but 

high-performance space-vector modulation-direct torque 

control (SVM-DTC) strategy using a single dc-link current 

sensor. In the proposed strategy, the position of the voltage 

space vector is divided into two areas: effective and non-

effective area. If it is located in the non-effective area, the 

voltage space vector will be simply shifted to the effective 

area. In the shifting procedure, the switching frequency of 

the inverter remains constant. Simulated results, based on 

MATLAB/Simulink, will be presented to demonstrate the 

validity of the proposed strategy. In this paper, the analysis 

is focused on an induction machine (IM) while other 

machine types can be analyzed through a similar method. 
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Fig. 1. Three phase AC machine drive. (a) Using three 

  current sensors. (b) Using single current sensor. 

 

 

2. Proposed Strategy 

 

2.1 Basic Concept of SVM-DTC 

 

In this paper, stator vectors are obtained by the 

coordinate transformation from the three-phase stationary 

coordinate abc to the two-axis stationary coordinate α-β 

with the axis aligned along the Phase-A of the stator.  

Current Vector Calculator computes 
si  by  
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where asi  and bsi are the sensed Phase-A and Phase-B 

current, and Phase-C current csi  is determined by 

)( bsascs iii                 (2) 

where the stator windings are connected in the “Y” shape. 

Voltage Vector Calculator computes su  by 

)(
3

2
3

4

3

2 
j

c

j

badcs esessuu         (3) 

where dcu  is the sensed dc-link voltage, and sa, sb, sc are 

the states of the upper switches of the inverter (s=1 means 

switch closed and s=0 means switch open).  

Flux&Torque Estimator aims to acquire the stator flux 

vector s  and the electromagnetic torque eT . s  is 

given by 

  dtRiu ssss )(          (4) 

where Rs is the stator resistance. The stator flux magnitude 

s  and the electromagnetic torque eT  can be calculated 

by 

22
sss                  (5) 
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where pn is pole pairs of IM, sss j    , 

sss jiii   . 

 

2.2 Basic Concept of Voltage Space Vector 

 

There are eight voltage space vectors, including six 

active voltage space vectors ( 1U - 6U ) and two zero voltage 

space vectors ( 0U , 7U ). They are labeled with the switch 

states (sa, sb, sc) and listed in Table 1. The distribution of 

voltage space vectors is illustrated in Fig. 2.  

 

Table 1. Voltage space vectors 

SV 0U  1U  2U  3U  4U  5U  6U  7U  

sasbsc 000 100 110 010 011 001 101 111 
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Fig. 2. Distribution diagram of both voltage space vectors 

and sectors 

 

(6) can be rewritten as 

 sin
2

3
ssne ipT               (7) 

where   is the angle between s  and si . Because the 

stator flux magnitude s  is kept nearly constant and the 

stator current magnitude si  can not be suddenly changed, 

quick response of the electromagnetic torque only can be 

implemented by changing  . In fact, the change of   
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can be achieved by rotating the stator flux, as is shown in 

Fig. 3. 
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Fig. 3. Diagram of the rotation of stator flux 

 

From Fig. 3, the variation of the stator flux s  can be 

derived by 
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where 
*
s ,θ and   is the reference of the stator flux 

magnitude, the phase angle of s  and the variation of  , 

respectively; sss j    . 

By (4) and (8), the reference of the stator voltage refU  

is calculated by 
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where Ts is the switching period,   is the phase angle of 

refU . In this paper, six sectors are defined as following 
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which is shown in Fig. 2. refU  is located in one sector 

determined by  . Based on the theory of space vector, 

refU  can be synthesized by two nearest active voltage 

space vectors ( kU , 1kU ) and two zero voltage space 

vectors ( 0U , 7U ), as illustrated in Fig. 4. 

And the acting times of SVs are calculated by 
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where   is the modulus after division of   and 60 ; 

kT , 1kT , 0T  are the acting time of kU , 1kU , zero 

voltage space vectors, respectively. The switch states are 

optimized to be center symmetric and are illustrated in Fig. 

5. 
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Fig. 4. Synthesization of refU . 

 

4

0T

4

0T

2

kT

2

1kT

2

0T

2

kT

2

1kT

0U 0U1kUkU 7U 1kU kU
 

 

Fig. 5. Output timing of switch states 

 

2.3 Using a single current sensor 

 

When the inverter applies an active voltage space vector 

to the IM, one stator phase is connected in series to the dc-

link rail of the inverter, either to the positive or to the 

negative polarity, whereas the other two phases are 

connected in parallel to the opposite polarity. The in-series 
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phase can be easily identified from the states of the upper 

switches of the inverter, and the current flowing in this 

phase is either equal or opposite to the dc-link current as 

illustrated in Table 2. 

Table 2. DC-link in-series stator phase current versus space 

vectors 

1U  2U  3U  4U  5U  6U  

ias=idc ics=-idc ibs=idc ias=-idc ics=idc ibs=-idc 

 

 

However, the selected active voltage space vector must 

be used long enough to ensure a proper sampling of the dc-

link current. The minimum acting time 1minT  is given as 

ADsetdead TTTT 1min            (14) 

where deadT , setT  and ADT  are the dead time of the 

inverter, the setup time of the dc-link current and the 

converting time of the A/D converter, respectively. Besides, 

to keep the switching frequency constant, 0T  has a 

minimum value defined as 2minT . Therefore, refU  is 

limited by 
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And the effective area of refU  is represented by the white 

areas in Fig. 6. 
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Fig. 6. Effective area (white) and non-effective area(green). 

 

If it is in the non-effective area represented by the shaded 

area in Fig. 6, refU  is shifted into the effective area by Fig. 

7. 

3. Implementation 

 

For the validation of the proposed DTC scheme, a s

imulation platform based on Matlab/Simulink was devel

oped, as is shown in Fig. 8. A 150V DC source is su

pplied and an IGBT-inverter-fed IM is used. The input

s of the DTC controller includes: 1) sample values of 

the signals coming from the sensors of current and vol

tage in the dc-link; 2) feedback value of the motor sp

eed. As well, the switch states are exported from the 

DTC controller to drive the inverter. Parameters of the

 simulation platform are listed in TABLE IV. 

 

Table 3. Parameters of IM 

Parameter Value 

Rated power Pe 5.5 kW 

Rated phase voltage Vrms 220 V 

Rated rotation speed Nn 1450 r/mim 

Stator resistance R1 0.628 Ω 

Rotor resistance R2 1.192 Ω 

Stator self-inductance L11 5.668 mH 

Rotor self-inductance L22 5.668 mH 

Mutual inductance Lm 163.9 mH 

Pole pairs pn 2 

Inertia J 0.2674 kg∙m
2
 

Friction factor δ 0.0016 N∙m∙s 

 

 

Table 4. Parameters of simulation platform 

Parameter Value 

Dead time 5 μs 

Switching frequency 20 kHz 

Sampling frequency 20 kHz 

 
 

A test has been executed on the platform to evaluate the 

steady and transient performances of the proposed DTC 

scheme. In the test, the stator flux magnitude of the IM is 

controlled at 0.5 Wb and the motor is operated at 500 r/min. 

In t=3.5s, a torque disturbance of -10 Nm is added and kept 

at 0.01 s. The simulated results of tests are illustrated in Fig. 

9 and Fig. 10 respectively. 

No matter whether the process is steady or transient, the 

estimated Phase-A current 
e
asi  always matches the 

measured Phase-A current 
m
asi  well, seen in Fig. 9(a) and 

Fig. 10(a). Both the steady-state and transient torques are 

well controlled and reported in Fig. 9(b) and Fig. 10(b). 

Besides this, the stator flux is also well controlled, as  

shown in Fig. 9(c) and Fig. 10(c)
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   Fig. 7. Flow chart of shifting algorithm 
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Fig. 8. Block diagram of simulation platform. 
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Fig. 9. Steady performances. (a) Current; (b) Electromagnetic 

torque; (c) Stator flux; (d) Speed. 

 

3.40 3.45 3.50 3.55 3.60 3.65 3.70
-10

-5

0

5

10
 Measured Value   Estimated Value

 

C
u

rr
en

t 
(A

)

Time (s)  
(a) 

 

3.40 3.45 3.50 3.55 3.60 3.65 3.70
-15

-10

-5

0

5

10

15
 

T
o

rq
u

e 
(N

m
)

Time (s)  
(b) 

 

3.40 3.45 3.50 3.55 3.60 3.65 3.70
0.0

0.1

0.2

0.3

0.4

0.5

0.6
 

F
lu

x
 (

W
b

)

Time (s)  
 

(c) 

3.40 3.45 3.50 3.55 3.60 3.65 3.70
480

490

500

510

520
 

S
p

ee
d

 (
R

P
M

)

Time (s)  
(d) 

 

 

Fig .10 .Transient  per formances .  (a )  Cur rent ;  (b ) 

  Electromagnetic torque; (c) Stator flux; (d) Speed. 
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4. Conclusion 

 

In this paper, a low-cost SVM-DTC strategy of IM drives 

with a single current sensor has been proposed. A simple 

shifting scheme has been developed to ensure that all 

voltage space vectors can be shifted into an effective area 

with minimum distortion. Additionally, the switching 

frequency remains constant. The steady-state and transient 

performances of the motor drive have been analyzed by 

simulation and the results confirm the effectiveness of the 

proposed strategy. 
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