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Steady-State Performance Analysis of an Integrated Wind Turbine
Generating System in a DC Transmission System with Power

Compensation System

Ken-ichiro Yamashita *, Shoji Nishikata **

Abstract — An electric power compensation system for a DC transmission system with an
integrated wind turbine generator is proposed. The proposed compensation system consists
of a synchronous generator and a duplex reactor. This apparatus is connected to the sending-
end circuit of the DC transmission system. A set of steady-state equations of the system is
first derived. Then, the effect of the duplex reactor, which can eliminate the sending-end grid
current distortion due to commutation of the converter, is explored. The relationships among
power at the sending-end circuit are also revealed. It is shown that fluctuations in the
sending-end grid power due to changes in wind velocities are compensated with the proposed
system. Finally, the effects of the sending-end grid conditions on the steady-state
characteristics of the system are studied.

Keywords: DC power transmission, Power control, Power conversion, Thyristor circuits,

Wind power generation

1. Introduction

The utilization of renewable energy sources such as wind
power is one of the most useful ways to maintain the
environment. In large-scale wind farms, the interconnecting
method of wind turbine generators with grids is a major
issue. We have studied a wind turbine generating system
using a shaft generator system [1]-[4], which is widely used
for power sources in large ships [5], and have proposed a
DC transmission system with an integrated wind turbine
generating system as one of the interconnecting methods
[6]. The proposed DC transmission system has high
reliability and a smoothing capacitor is not required since a
current-source thyristor inverter and converters are adopted.
Moreover, this system requires only one inverter to operate
many wind turbine generators simultaneously. Furthermore,
it can generate high quality electrical power without
distortion [3]. These features of the system are advantages
for large-scale wind farms.

In [7], we have investigated the steady-state
characteristics of the proposed DC transmission system and
have explored compensating methods for fluctuations in the
receiving-end grid power due to changes in wind velocities.
However, compensating methods for the sending-end grid
power have been little discussed. In this paper, a sending-
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Fig. 1. Configuration of the proposed DC transmission

system including wind turbine generating systems

end grid power compensation system for the DC
transmission system including wind turbine generators is
proposed.

A configuration of the proposed DC transmission system
with the power compensating system is shown in Fig. 1. In
this system, AC power produced by the wind turbine
generator is converted into DC power with the thyristor
converter, and this DC power is combined with the power
of the DC transmission system. The total DC power is
converted into AC power with the thyristor inverter. In
addition, the synchronous compensator connected to the
receiving-end grid provides reactive power for the grid and
for commutation of the inverter thyristors. Then, receiving-
end grid output voltage harmonics can be eliminated with
the duplex reactor [3]. The power compensating system
proposed in this paper consists of a synchronous generator
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Fig. 2. Equivalent circuit of the sending-end circuit for the

proposed system

and a duplex reactor. This apparatus is connected to the
sending-end grid to compensate fluctuations in the sending-
end grid power and to eliminate harmonic components of
the sending-end grid current. As in Fig. 1, since the
sending-end circuit is the same as the receiving-end circuit,

the power flow of the whole system can be easily controlled.

In this paper, the steady-state equations of the proposed
system are derived first. Then, the effect of the sending-end
duplex reactor is explored, and the steady-state
characteristics of the power at the sending-end circuit are
revealed. Finally, the effects of the sending-end grid
conditions on the steady-state characteristics of the system
are investigated and the appropriate conditions of the
sending-end grid are discussed.

2. Derivation of Steady-State Equations

In Fig. 2, the equivalent circuit is shown to derive the
steady-state equations of the sending-end circuit for the
proposed system with the power compensating system. In
this figure, several sets of wind turbine generating systems
are represented as DC voltage sources Vi, Viwzs - - - 5 Vi
respectively. It is also assumed that the sending-end grid
current distortion is eliminated completely with the duplex
reactor. Fig. 3 shows the phasor diagram of the fundamental
components of the voltages and currents in the sending-end
circuit given in Fig. 2 (per phase).

Let us now derive the steady-state equations of the
sending-end circuit. In [5] — [7], a set of equations of the
system without the power compensating system proposed
here have already been derived, and these equations can be
applicable.

Based on Figs. 2 and 3, the RMS value of the imaginary
terminal p , phase voltage V, , and the lagging angle n,
are obtained by:

V. =0, -x, 1sing , F+(x, Zcoso ,F (1)

H_
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Fig. 3. Phasor diagram (per phase)

where, V;: sending-end input terminal phase voltage, I;:
input terminal current at the sending-end, ¢ ,: power factor
angle of the sending-end grid, X, ,: sending-end circuit
duplex reactor reactance.

The armature induced voltage of the synchronous
generator can be assumed to be sinusoidal when it has
damper windings. The RMS value of the armature induced
voltage V; ; and the lagging angle ¢ , are given by:

v =JU—(x, . +x, +x. sno ]

*+((Xﬁ,s +X, +XU" )IS cos (pj)Z 3)
(X pet X, +X ' )I ,COSQ |

R
e ,=tan v —(XB; X, +X,U" )IS sin O

“

where, Xj ;: sending-end circuit duplex reactor reactance,
X s ": subtransient reactance of the synchronous generator.

The angle of overlap of converter input currents u , is
expressed as follows:

2x, .

) ; Vx4 X, )
U  =—0,+C0S " {COSTLy,

5
N ®)

pn_s

where, og: firing angle of the sending-end converter, X, :

sending-end duplex reactor reactance, /;: DC link current.
The RMS value of the fundamental component of the

armature current /; ; and the lagging angle C , can be given

by:

I, :\/ (Wer, in) +1, =261, /), *

5

XCOS(T]27S +a’db +u75 /2_(1[)7&) (6)

¢ S:(p_s—g_s+sin“{@sm[n2S+ocdb+u—zs—(pYj} @)

|
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On the other hand, the DC side voltage for the sending-
end circuit V, shown in Fig. 2 is expressed as:

36
Va :T VIU CosOL —EU (8)

B =2(x, +x, +x, ), ©)

X_s
T

E

X_s

cosocd,,—cosocdb+uj) (10)

W6
T

Similarly, the average value of the inverter DC side
voltage E; can be obtained by [5]:

36

E, :TV’U cosy+E, . (€89
E =2(x, ,+x, +x, ), (12)
A _ -
36
E. r=2—Vu r(cosy—u r—cosy) (13)
- T M- -

where, V, ,: receiving-end circuit imaginary terminal phase
voltage, X, ,, Xp, receiving-end circuit duplex reactor
reactances, XU”: subtransient reactance of the synchronous
compensator shown in Fig. 1, u ,: overlap angle of inverter
currents, v: leading angle of commutation of the inverter.

Moreover, the DC side voltage of the ith i= 1,2, ..., n)
wind turbine generator to obtain the maximum power from
the wind turbine Vg, is expressed as follows [7], [8]:

wa Wl (14)
l)tmaxi :0‘5.Cpmaxi p141 .I/windi3 (15)

deopi = {})tmaxi - Rwi ! (}\’opi /Rri )2 ' I/x

where, P, the maximum output power derived from the
ith wind turbine, R,;: damping coefficient, 4,,;: the optimum
tip speed ratio, R,;: blade radius, V.4 wind speed, Cppau:
the maximum power coefficient, p: the air density, 4;: rotor
swept area. When the maximum power is obtained, the ith
wind turbine generator DC side voltage V,,; is equal to
Vwopi-

From (8), (11), and (14), the total DC side voltage V, can
be expressed as [7]:

V,=Vy+Vyy -tV

dwn

=RI, +E, (16)

where, R = Rye + 274 s + 274 », Ryt DC reactor resistance,
Tac s> Tac - combined resistances of the AC reactor and the
armature winding of the synchronous machine at the
sending-end and receiving-end circuits respectively.

Fig. 4 shows the equivalent circuit of the synchronous
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Fig. 4. Equivalent circuit of the synchronous generator

generator to derive steady-state equations considering
magnetic saturation. In the following, the steady-state

equations for the synchronous generator are derived based
on Fig. 4 and [4].
The voltage equation of the field winding is expressed as:

Vfﬁs :rffis 'ifis (17)

where, V;: field voltage, r/,: field resistance, ir,: field
current.

The air-gap flux linkage of the synchronous generator
Vg s can be obtained by:

\Vgis :\/(kd;Y\Vddis )2 +(kq7SWq073)2 (18)
kdis :Laddis /deofx (19)
kqis = Ladqis /quois (20)

where, Lyga s, Laag - maximum value of mutual inductances
between armature winding and d-axis damper winding, ¢-
axis damper winding, respectively, Lauo s, Lago s: d-axis and
g-axis damper self-inductances, Wq 5, Wqo 5¢ total magnetic
flux linkages of the d-axis and g-axis damper windings and
these are given by:

Vi s = 3\/5/2'11; “Loga s Sin(_ o _C;)""Lfddj dp (2D
\quis = _36/2 .117,: .Ladq7S COS(_ a75 - Cis) (22)

Q7S :tan% {_kqi,v\vqois /(kdis\‘lddis)} (23)

where, Ly, ;- mutual inductance between field winding and
d-axis damper winding, a ¢ shift angle due to armature
reaction.

Based on [4], the steady-state equations considering

magnetic saturation of the synchronous generator are given
by:
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deis = deoj /2{(1_K.Wgs)

+\/(1_k1j“Vg,s)z_szs"l’g,sz} (24)
Xy =Xy =X, | (25)
Xy o=k, X (26)
X, =0, X, | 27)

where, X, ( : d-axis synchronous reactance, X, ,,

ku, k275, kq s, 045 the parameters of considering
magnetic saturation of the synchronous generator refer to

4], X, ,» X, ,: d-axis and g-axis armature reaction

reactances, X,  : armature leakage reactance. In (24) —

(27), ‘= show per-unit representation. The base values in
the per-unit system are given in [9].

On the other hand, the steady-state equations of the power at
the sending-end circuit can be expressed by [7], [10]:

P, = W6 1Q2ry, (cos Oy, +COS Oy, + )Id (28)

2
Oun :Id\/(}\/g/n' VLS) _de2 (29)
Psg =Py =P, =Py, =3V I cos¢ | (30)
Os6 =04, =0, =0y, — 3V, sing (31)

By using these equations and the equations derived in [6]
and [7], we can examine the steady-state performances of
the proposed DC transmission system.

3. Steady-State Characteristics

Let us discuss the steady-state characteristics of the
system through the theory and experiments for a tested
system when one wind turbine generator is connected to the
DC transmission system. The ratings of the synchronous
generator of the tested system are 2.77(kVA), 4poles,
200(V), and 8(A). Then, the constants needed to calculate
the steady-state characteristics are shown in Table 1. In
addition, the sending-end grid and receiving-end grid are
assumed to be infinity bus.

3.1 Effect of the sending-end duplex reactor
The receiving-end duplex reactor can eliminate the

receiving-end grid output voltage distortion [3]. Here, let us
discuss the effect of the sending-end duplex reactor. The.

Table 1. Parameters of the Tested System and Simulated
Wind Turbine (per-unit representation)

Synchronous machine DC transmission system

Xaas 0429pu  Xans 0.429 pu R 0.149pu
Xegs 0208pu  Xuo, 0208 pu

Trs  0.003484pu X,,” 0.123pu || ACReactor

k.. 0485 X 0.824pu X.s 0.184pu

C4s 0.212 ki, 0.143pu X, =0.123 pu

X, 0.15pu ky, 0393 pu X, 0368pu

Wind turbine (rating of turbine power is 0.1pu)

Comaxt 0.436 p 10pu R, 9.028 pu

Aoy 5.52 R Opu 4 0.459pu

i

Notes — the parameters of the receiving-end are the same values of
the parameters shown in this table. When wind velocity is 10m/s,
which is the rated wind speed, the output power of the simulated
wind turbine is 277W. All wind turbines connected to the system
have the same parameters shown in this table.
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Fig. 5. Measured sending-end circuit current waveforms

sending-end grid current distortion due to commutation of
the converter thyristors will be eliminated because the
subtransient inductance of the synchronous generator is
canceled out by the sending-end circuit duplex reactor

Fig. 5 shows current waveforms of the converter input
terminal, the synchronous generator output terminal, and
the input terminal at the sending-end for the tested system.
The conditions for the waveforms are given in the figure.
From this figure, it is shown that, although there were
harmonics in the converter input current and in the
synchronous generator output current waveforms due to the
commutation of the converter thyristors, almost no
distortion in the sending-end grid current waveform was
obtained, supporting the usefulness of the sending-end
duplex reactor.

3.2 Steady-state characteristics of the sending-end
circuit

In the DC transmission system without a power
compensating system, fluctuations in the power at the
receiving-end grid due to changes in wind velocities can be
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compensated by the input DC power control and the
sending-end grid power is varied with the changes in the
input DC power [7]. In the case with the proposed power
compensating system, the synchronous generator is
connected to the sending-end circuit and provides active
and reactive power for the sending-end circuit to suppress
the fluctuations in the power at the sending-end grid.

Fig. 6 shows the steady-state characteristics of the
synchronous generator output active and reactive power Psg,
Osc, the sending-end converter input active and reactive
power Py, O, the sending-end grid active and reactive
power P, O, the DC side voltages at the sending-end
circuit and the wind turbine generating system Vy, Vi,
and the field current of the synchronous generator iy ; when
the wind velocity V,,..1 was changed. The system
conditions are given in Fig. 6(a). From Fig. 6, it is shown
that the measured and calculated results are in good
agreement, supporting the theory derived in this paper. It is
clarified from Fig. 6(c) that V,,, is increased with V..
because V,; is controlled in order to obtain the maximum
DC input power from the wind turbine generating system.
In this case, Vy is reduced with the increase in Va1 to
maintain the total DC side voltage V, constant. It can be
seen that, although the reduction in V,, causes the decrease
in Py, a constant power at the sending-end grid P can be
obtained by controlling Ps; for the case with the power
compensating system. It is also shown that, although the
converter input reactive power Qg is increased as shown in
Fig. 6(b) due to the increase in a,; required for the decrease
in V,, the sending-end grid reactive power Q, can be kept
constant. This is because the synchronous generator can
operate as a synchronous compensator to supply sufficient
reactive power (Qsg). In this case, the field current i, is
increased as shown in Fig. 6(c).

3.3 Effects of the sending-end grid conditions on the
steady-state characteristics of the system

In the foregoing discussions, it has been confirmed that
the constant sending-end grid power and the sending-end
grid current without distortion can be obtained for the case
with the proposed electrical power compensation system.
We discuss here the effects of the sending-end grid
conditions on the steady-state characteristics of the system.

In Fig. 7, the characteristics of the sending-end
imaginary terminal pu ; phase voltage V, ,, the sending-end
circuit DC side voltage V4, the sending-end converter input
active and reactive power P, Oy versus the sending-end
grid active power P; for three values of the sending-end
grid power factor are shown. The system conditions needed
to calculate the characteristics are expressed in Fig. 7(a). It

Sending-end: V,= 117.95(V), I,=1.690(A), p.f = 0.93, £, = 50(Hz)
Receiving-end:V,= 120,09(V), I,= 1.173(A), p.f = 096, £, = 50(Iz)
I1,=2.62(A), V,=262.15(V), Y=30.7(deg.)
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Fig. 6. Steady-state characteristics of the sending-end
circuit when the wind velocity was changed

is shown that since V), ; becomes larger for the case when
the power factor is leading, V,;, becomes larger for the case
of the leading power factor as shown in Fig. 7(a). Since the
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Fig. 7. Effects of the sending-end grid conditions on the
system characteristics

output power at the receiving-end grid should be kept
constant, the increase in ¥y, causes reductions in the leading
angle of commutation of the inverter y and the DC link
current I, Consequently, the active power and reactive
power required from the converter Py, Qg become smaller
when the sending-end grid power factor is leading. It can be
seen that when the power factor is lagging, the operation
limit due to the minimum DC transmission voltage may be
caused by the voltage drop in L, and that for the case
when the power factor is leading, the commutation failure
for the inverter may occur due to the reduction in y. It is
also shown that the effects of the sending-end power factor
are increased with the sending-end grid active power P,.

To suppress the useless increase in the DC input power,
which causes system losses, the sending-end grid power
factor should be selected leading. However, in this case a
large-sized synchronous generator is required because the

Sending-end: P,= 1.940(kW), £ = 50(Hz) V,,,,=0, az=0(deg.)
Receiving-end:V,= 115.47(V), I,= 8.0(A), p.f- = 0.96, f, = 50(Hz)
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Fig. 8. Effects of the sending-end terminal voltage on the
system characteristics

synchronous generator provides reactive power not only for
the converter but also for the sending-end grid. Furthermore,
it is expected from (1) and (8) that the sending-end input
terminal voltage V affects the DC side voltage V, directly

Hence, let us explore the effects of the sending-end input
terminal voltage and the appropriate sending-end grid
conditions for the system characteristics. Fig. 8 shows the
effects of the sending-end input terminal voltage V; on the
steady-state characteristics of the system. In Fig. 8, the
characteristics of the synchronous generator armature
current /, 4, the field current i, ;, the sending-end circuit DC
side voltage V;, and the leading angle of commutation y
versus the sending-end input terminal voltage V; for three
values of the sending-end grid power factor are shown. The
marks ‘e’ appeared in this figure show steady-state
operating points of the calculated values for the case of
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vy — u , = 20 (deg.). The simulation conditions are given in
Fig. 8(a). From Fig. 8, it is noticed that ir; and V are
increased with V; for any power factor, whereas /, ; and y are
reduced with an increase in V. It is also shown that since V,
is changed in proportion to V; as shown in Fig. 8(b), the
effects of the sending-end grid power factor can be reduced
by V. For example, as in Fig. 8(b), the same values of y and
Vu can be obtained by adjusting V; even though the power
factor in the sending-end grid has a different value.

As a result, when the sending-end terminal voltage V is
selected properly, the same characteristics of the system
except the sending-end circuit can be obtained even if the
sending-end grid power factor is different. Consequently,
the sending-end grid power factor should be selected 100%
or lagging to reduce the reactive power produced by the
synchronous generator, and the sending-end input terminal
voltage V5 should be chosen a large value so as to reduce
the effects of the sending-end grid power factor and to
lessen the system losses.

4. Conclusion

In this paper, the electrical power compensation system
for the DC transmission system with an integrated wind
turbine generator has been proposed and its steady-state
characteristics have been investigated.

The following have been concluded from the discussions:

It has been shown that a satisfactory harmonic
elimination in the sending-end grid current waveform is
achieved and that the sending-end grid power fluctuations
due to changes in wind velocities are compensated with the
proposed power compensating system.

The effects of the sending-end grid conditions on the
steady-state performances for the whole system have been
discussed. It has been shown that, although the reactive
power required from the sending-end converter is
decreased when the sending-end grid power factor is
leading, the sending-end grid needs reactive power.
Furthermore, since the effects of the power factor on the
characteristics of the system except the sending-end circuit
can be reduced by the sending-end input terminal phase
voltage, the sending-end grid power factor should not be
selected leading to reduce the compensation system size.
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