Relation of Stream Shape Complexity to Land Use, Water Quality and Benthic Diatoms in the Seom River Watershed

섬강 수계에서 하천 형태복잡도와 토지이용, 수질 및 부착규조류 군집 분포와의 관계

  • Received : 2012.02.20
  • Accepted : 2012.03.15
  • Published : 2012.03.31

Abstract

This study examined the benthic diatom community distribution, land cover/use and water quality in relation to stream shape complexity (SSC) in the Seom River watershed. SSC showed a significant relation to the riparian land cover/use pattern and also water quality variables of the studied streams. Streams with high stream shape complexity (HSC) appeared to have a high proportion of forest and farmland, while streams having a low stream shape complexity (LSC) appeared to have high proportion of city. Streams with lower SSC showed higher nutrients concentration in the stream waters. Benthic diatom species composition and dominant species appeared to be similar regardless of SSC differences among the studied streams, while the variation of diatom density was manifested with SSC. The relative abundance of dominant benthic diatoms varied with SSC. Saprophilic diatoms were dominant in the streams of LSC, while saproxenic diatoms were dominant in the streams of HSC. During the evaluation of biological water quality using the benthic diatom indices, Trophic Diatom Index (TDI) and Diatom Assemblage Index to organic water pollution (DAIpo), the streams of LSC generally showed poorer water quality than those of MSC (Middle stream shape complexity) and HSC. In particular, BOD, TP, and $PO_4$-P showed significant relationships with DAIpo. In conclusion, shape complexity of streams in the Seom River watershed showed a close relation with benthic diatom distribution. This relation seemed to primarily be resulted from the effect of proximate factors, such as water quality, which might be affected by the land use types determining the degree of SSC.

본 연구는 섬강 수계 하천에서 하천의 형태복잡도와 부착규조류 군집 분포와의 관계를 자연지리, 토지이용도, 수리, 수질요인들과의 관계를 통해 분석하였다. 하천의 형태복잡도는 하천의 입지(고도)와 하폭 그리고 주변의 토지이용도와 밀접한 관계를 나타냈으며, 동시에 하천의 수질과도 유의한 관계를 보여주었다. 즉, 형태복잡도가 높은 하천은 숲과 농경지의 이용도가 높았으며, 반면 형태복잡도가 낮은 하천에서는 도시 이용도가 높게 나타났다. 한편, 형태복잡도가 높을수록 하천의 영양염의 농도가 낮은 결과를 나타냈다. 섬강 수계에서 출현한 부착규조는 총 145 분류군(2목 3아목 8과 26속 125종 15변종 2품종 3아종)이 출현하였다. 하천의 형태복잡도 차이에 관계없이 부착규조류 군집의 종조성과 우점종의 차이는 크지 않았으나 밀도와 지표종의 차이는 뚜렷하게 나타났다. 부착규조류 지표종은 낮은 형태복잡도를 가진 지점들에서 호오탁성종의 상대밀도가 높았던 반면, 복잡도가 높은 지점들에서는 호청수성종의 종수와 상대밀도가 더욱 높았다. 부착규조류 생물지수(TDI, DAIpo)를 이용해 생물학적 수질을 평가한 결과 형태복잡도가 낮은 지점들에서의 수질이 상대적으로 불량하게 나타났다. 특히, BOD, TP, $PO_4$-P 농도는 DAIpo와 높은 상관관계를 나타냈다. 결론적으로, 섬강 수계 하천의 형태복잡도는 부착조류 군집의 분포와 밀접한 관계를 보여주었으며, 보다 직접적으로 이들의 관계는 형태복잡도의 차이를 결정짓는 주변 토지이용의 형태가 하천수질에 영향을 미쳐 나타난 것으로 이해되었다.

Keywords

References

  1. APHA. 1995. Standard methods for the examination of water and wastew ter, 18th Ed. American Public Health Association.
  2. Bak, P. and K. Sneppen. 1993. Punctuated equilibrium and criticality in a simple model of evolution. Physics Review Letter 71: 4083-4086. https://doi.org/10.1103/PhysRevLett.71.4083
  3. Cadenasso, M.L. and S.T.A. Pickett. 2000. Linking forest edge structure to edge function: mediation of herbivore damage. Journal of Ecology 88: 31-44. https://doi.org/10.1046/j.1365-2745.2000.00423.x
  4. Center for Aquatic Ecosystem Restoration. 2011. Development of Technology for Creation of Natural Waterfront and Replacement of Artificial Waterfront. Final Report.
  5. Darby, S. and D. Sear (ed.) 2008. River restoration: Managing the uncertainty in restoring physical habitat. John Wilry & Sons, Ltd. The Atrium, Southern Gate, Chichester, 315 pp.
  6. Dunne, T. and L.B. Lepold. 1978. Water in environmental planning. W. H. Freeman and Company. Eagleson, P.S. 1970. Dynamic Hydrology, McGraw-Hill.
  7. Fjerdingstad, E. 1964. Pollution of streams estimated by benthal phytomicro organism. 1. A saprobic system based on communities of organism and ecological factors. Internationale Revue der gesamten Hydrobiologie und Hydrographie 49: 63-131. https://doi.org/10.1002/iroh.19640490103
  8. Fore, L.S. and C. Grafe. 2002. Using diatoms to assess the biological condition of large rivers in Idaho (USA). Freshwater Biology 47: 2015-2037. https://doi.org/10.1046/j.1365-2427.2002.00948.x
  9. Forman, R.T. 1995. Land Mosaics: the Ecology of Landscape and Regions. New York: Cambridge University Press.
  10. Gomez, N. and M. Licurisi. 2001. The pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35: 173-181. https://doi.org/10.1023/A:1011415209445
  11. Haper, D.M. and W.D.P. Stewat. 1987. The effects of land use upon water chemistry, particularly nutrient enrichment, in shallow lowland lakes; comparative studies of three lochs in Scotland. Hydrobiologia 148: 211-299. https://doi.org/10.1007/BF00017525
  12. Horner, R.R. and E.B. Welch. 1981. Stream periphyton development in relation to current velocity and nutrients. Canadian Journal of Fisheries and Aquatic Sciences 38: 449-457. https://doi.org/10.1139/f81-062
  13. Hwang, S.J., N.Y. Kim, D.H. Won, K.K. An, J.K. Lee and C.S. Kim. 2006. Biological assessment of water quality by using epilithic diatoms in major river systems (Geum, Youngsan, Seomjin River), Kore. Journal of Korean Society on Water Quality 22(5): 784-795.
  14. Hwang, S.J., N.Y. Kim, S.A. Yoon, B.H. Kim, M.H. Park, K.A. You, H.Y. Lee, H.S. Kim, Y.J. Kim, J.H. Lee, O.M. Lee, J.K. Shin, E.J. Lee, S.L. Jeon and H.S. Joo. 2011. Distribution of benthic diatoms in Korean rivers and streams in relation to environmental variables. Annales de Limnologie-International Journal of Limnology. 47: S15-S33.
  15. Jung, K.W., C.G. Yoon, J.H. Jang and H.C. Kim. 2006. Analysis of land use and pollutant source effect on water quality characteristics of the watershed. Korean Journal of Limnology 39(1): 41-51.
  16. Kelly, M.G. and B.A. Whitton. 1995. The trophic diatom index: a new index for monitoring eutrophication in river. Journal of Applied Phycology 7: 433-444. https://doi.org/10.1007/BF00003802
  17. Kim, K.D. 2003. Determination of endocrine disrupting chemicals in Sum River and Wonju Stream area. Journal of the Korean Society for Environmental Analysis 6: 1-5.
  18. Kim, K.D., J.B. Seo and Y.C. Seo. 2007. Water quality analysis of Sumgang, Wonjucheon, Maejucheon and their major influents. Journal of the Korean Society for Environmental Analysis 10(4): 191-196.
  19. Kim, Y.J. 2007. Changes of epilithic diatom communities according to urbanization influence in the Pocheon and Youngpyeong Streams. Korean Journal of Limnology 40(3): 468-480.
  20. Krammer, K. and H. Lange-Bertalot. 1986. Bacillariophyceae 1. Teil: Naviculaceae. In: Susswasserflora von Mittleuropa, Band 2/1. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds.). Gustav Fischer Verlag. Stuttgart. 876pp.
  21. Krammer, K. and H. Lange-Bertalot. 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Susswasserflora von Mittleuropa, Band 2/2. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds.). Gustav Fischer Verlag. Stuttgart. 596pp.
  22. Krammer, K. and H. Lange-Bertalot. 1991a. Bacillariophyceae 3. Teil: Cenrales, Fragilariaceae, Eunotiaceae. In: Susswasserflora vou Mittleuropa, Band 2/3. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds). Gustav Fischer Verlag. Stuttgart. 576pp.
  23. Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophyceae 4. Teil: Achnanthaceae Kritische Eraganzungen zu Navicula (Lineolatae) und Gomphonema. In: Susswasserflora von Mittleuropa, Band 2/4. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds). Gustav Fischer Verlag. Stuttgart. 437pp.
  24. Lamberti, G.A. 1993. Grazing experiments in artificial streams. Journal of the North American Benthological Society 12: 337-343.
  25. Lange-Bertalot, H. 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64: 258-304.
  26. Lee, S.W., H.J. Chang and S.K. Kang. 2000. Fractal appraoches to ecological and limnological phenomena. Korean Journal of Limnology 33(2): 69-79.
  27. Lee, S.W. and S.J. Hwang. 2007. Investigation on the relationship between land use and water quality with spatial dimension, reservoir type and sahpe complexity. Journal of Korean Institute of Landscape Architecture 34(6): 1-9.
  28. Leland, H.V. and S.D. Porter. 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biology 44: 279-301. https://doi.org/10.1046/j.1365-2427.2000.00536.x
  29. Lenoir, A. and M. Coste. 1996. Development of a Practical Diatom Index of Overall water Quality Applicable to the French National Water Board network. Use of Algae for Monitoring Rivers (Whitton, B.A. and E. Rott, eds.). Proceedings of an International Symposium. Inbruck, Austria, p. 29-45.
  30. Liboriuseen, L., E. Jeppesen, M.E. Bramm and M.F. Lassen. 2005. Periphyton-macroinvertebrate interactions in light and fish manipulated enclosures in a clear and a turbid shallow lake. Journal of Aquatic Ecology 39: 23-39. https://doi.org/10.1007/s10452-004-3039-9
  31. McGarigal, K. and B.J. Marks. 1995. FRAGSTATS; Spatial Pattern Analysis Program for Quantifying Landscape Structure. General Technical Report PNW-GTR-351. Porland. OR: USDA Forest. Service, Pacific Northwest Research Station.
  32. McHarg, I. 1969. Design with nature. Garden City, New York. Doubleday/Natural Press.
  33. MOE/NIER. 2007. Final report of survey and evalutation of aquatic ecosystem health in Korea. The ministry of Environment/National Institute on Environmental Research, Korea.
  34. MOE/NIER. 2010. Final report of survey and evalutation of aquatic ecosystem health in Korea. The ministry of Environment/National Institute on Environmental Research, Korea.
  35. Naiman, R.J., H. Decamps and M.E. McClain. 2005. Riparia: Ecology, conservation, and management if streamside communities. Elsevier, Amsterdam. 430 pp.
  36. Newall, P. and C.J. Walsh. 2005. Response of epilithic diatom assemblages to urbanization influences. Hydrobiologia 532: 53-67. https://doi.org/10.1007/s10750-004-9014-6
  37. Patrick, R. and C.W. Reimer. 1966. The diatoms of the United States, exclusive of Alaska and Hawaii. Volume 1: Fragilariaceae, Eunotiaceae, Achnantheceae, Naviculaceae. Academy of natural sciences of Philadelphia, Philadelphia.
  38. Reynolds, C.S. 2006. The ecology of Phytoplankton. Cambridge University press. UK.
  39. Rodriguez-Iturbe, I., M. Marani, R. Rigion and A. Rinaldo. 1994. Self-organized river basin landscapes: fractal and multifractal characteristics. Water Resources Research 30: 3531-3539. https://doi.org/10.1029/94WR01493
  40. Roy, A.H., A.D. Rosemond, M.J. Paul, D.S. Leigh and J.B. Wallace. 2003. Stream macroinvertebrate response to catchment urbanization (Geogia, USA). Freshwater Biology 48: 329-346. https://doi.org/10.1046/j.1365-2427.2003.00979.x
  41. Schlosser, I.J. 1982. Fish community structure and functon along two habitat gradients in a headwater stream. Ecological Monographs 52: 395-414. https://doi.org/10.2307/2937352
  42. Sponseller, R.A., E.F. Benfield and H.M. Valett. 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology 46: 1409-1424. https://doi.org/10.1046/j.1365-2427.2001.00758.x
  43. Stevenson, R.J. 1997. Scale-dependent causal framework and the consequences of benthic algal heterogenity. Journal of the North American Benthological Society 16: 248-262. https://doi.org/10.2307/1468255
  44. Stevenson, R.J., C.G. Peterson and D.B. Kirschtel. 1991. Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom suc-cession in streams. Journal of the Phycology 27: 59-69. https://doi.org/10.1111/j.0022-3646.1991.00059.x
  45. Stepenuck, K.F., R.L. Crunkilton and L. Wang. 2002. Impacts of urban land use on macroinvertebrate communities in southeastern Wisconsin streams. Water Research 38: 1041-1051.
  46. Suh, J.H., Y.B. Cho and J.G. Lee. 2002. A study on the analysis of landscape preference in the rural-landscape by index of shape -the case of rural culture village. Journal of the Korean Forest Society 6(2): 7-104.
  47. Taboton, D.G., R.L. Bras and I. Rodriguez-Iturbe. 1988. The fractal nature of river networks. Water Research 24: 1317-1322. https://doi.org/10.1029/WR024i008p01317
  48. Tong, S.T.Y. and W. Chen. 2002. Modeling the relationship between land use and surface water quality. Journal of Environmental Management 66(4): 377-393. https://doi.org/10.1006/jema.2002.0593
  49. US EPA. 2002. Biological assessments and criteria: crucial components of water qualiy programs. EPA 822-F-02-006., Washington D.C. USA.
  50. Van Nieuwenhuyse, E.E. and J.R. Jones. 1966. Phosphoruschlorophyll relationship in temperate streams and its variation with stream catchment area. Canadian Journal of Fisheries and Aquatic Sciences 53: 99-105.
  51. Vannote, R.L, G.W. Minshall, K.W. Cummis, J.R. Sedell and C. Cushing. 1980. The river cintinuum concept. 1. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137. https://doi.org/10.1139/f80-017
  52. Walsh, C.J., A.K. Sharpe, P.F. Breen and J.A. Sonneman. 2001. Effect of urbanization on streams of the Melbourne region, Victoria, Austrailia. I. Benthic macroinvertebrate communities. Freshwater Biology 46: 535-551. https://doi.org/10.1046/j.1365-2427.2001.00690.x
  53. Watanabe, T. 1977. Water pollution of Lanzaki river on Osaka prefecture and the diatom flora of the bottom mud on the river bed. Nara. Hydrobiologia 6: 25-27.
  54. Watanabe, T. and K. Asai. 1990. Numerical simulation using diatom assemblage of organic pollution in stream and lakes. The Review of Inquiry and Research 52: 99-139.
  55. Wiens, J.A. 1992. Ecological flows across landscape boundaries: a conceptual overview. In A.J. Hansen and F. di Castri, eds., Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. New York: Springer Verlag, 217-235.
  56. Yamamoto, K. 1944. The plankton of Tenti and Santien of Mt. Hakuto. Japanese Journal of Limnology 13: 167-170. https://doi.org/10.3739/rikusui.13.167
  57. Yoon, S.A., N.Y. Kim, B.H. Kim and S.J. Hwang. 2010. Effects of an inflowing urban stream (Wonju stream) on epilithic diatom assemblages in the lower Seom River. Korean Journal of Limnology 43(2): 232-241.