Distribution, Vegetation Structure and Biomass of Submerged Macrophytes in a Small Agricultural Reservoir, Keumpoong Reservoir, Korea

소형 농업 저수지인 금풍저수지에서 침수식물의 분포, 식생구조 및 생물량

  • Received : 2012.01.14
  • Accepted : 2012.03.15
  • Published : 2012.03.31

Abstract

Distribution, abundance and biomass of submerged macrophytes were assessed using a double-headed rake and an echo-sounder in the Keumpoong Reservoir to investigate the temporal and spatial variations of submerged macrophytes in a small agricultural reservoir located upstream. Slope steepness and water depth in the littoral zone were important controlling factors on flora and vegetation structure of submerged macrophytes. Biodiversity of submerged macrophytes was increased at a gentle slope of the littoral zone. The results of DCA (detrended correspondence analysis) showed that the structure of submerged vegetation depended on the depth of water. Submerged macrophytes were distributed at the maximum water depth of 2.8 m in the Keumpoong Reservoir. The area occupied by the submerged macrophytes was estimated at only 6% of the total reservoir area because of the steep slope of the littoral zone and the large annual water-level fluctuation of 3.5 m. The increase of water level and inflow of turbid water in the rainy season might reduce the biomass of submerged macrophytes in the reservoir. It may be concluded that submerged vegetation in the Keumpoong Reservoir, a small agricultural reservoir located at the upstream, appears to be particularly susceptible to water level fluctuations and slope steepness of the littoral zone.

하천 상류에 위치한 농업용 소형 저수지인 금풍지에서 침수식물의 분포와 수도의 공간적 시간적 변이를 파악하기 위하여, 양날갈퀴법과 음파탐지법을 이용하여 침수식물의 분포, 풍부도 및 생물량을 측정하였다. 침수식물의 출현종수와 식생구조는 연안대의 지형 경사도와 수심에 영향을 받았다. 침수식물 식물상의 종풍부도는 완만한 연안대에서 높았다. DCA (detrended correspondence analysis)에 의한 식생분석 결과에 의하면 침수식물의 식생구조는 수심에 의하여 영향을 받았다. 금풍저수지에서 침수식물은 최대 수심 2.8 m까지 분포하였다. 침수식물 분포지는 수변부 경사가 급하고 연간 수위변동폭이 3.5 m에 달하여 총수면적의 6%에 불과하였다. 침수식물의 생물량은 수위변동과 홍수기 탁수 유입으로 인하여 제한되었다. 결론적으로 하천 상류에 조성된 농업용 저수지인 금풍지에서 침수식물의 식생구조는 수심과 연안대 경사에 의하여 영향을 받았고, 연안대 경사가 급하고 연수위변동이 커서 침수식물의 분포와 생물량이 제한되었다.

Keywords

References

  1. Ali, M.M., A.A. Mageed and M. Heikal. 2007. Importance ofaquatic macrophyte for invertebrate diversity in large subtropical reservoir. Limnologica 37: 155-169. https://doi.org/10.1016/j.limno.2006.12.001
  2. Barko, J.W. and W.F. James. 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension, p. 197-217. In: The Structuring Role of Submerged Macrophytes in Lakes (Jeppesen, E., M. Sondergaard and K. Christoffersen, eds.). Springer, New York.
  3. Barko, J.W., D. Gunnison and S.R. Carpenter. 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquatic Botany 41: 41-65. https://doi.org/10.1016/0304-3770(91)90038-7
  4. Beklioglu, M., G. Altinayar and C.O. Tan. 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv fur Hydrobiologie 166: 535-556. https://doi.org/10.1127/0003-9136/2006/0166-0535
  5. CAER. 2011. http://www.ecowater.re.kr/. Center for Aquatic Ecosystem Restoration, Chuncheon.
  6. Capers, R.S. 2000. A comparison of two sampling techniques in the study of submersed macrophyte richness and abundance. Aquatic Botany 68: 87-92. https://doi.org/10.1016/S0304-3770(00)00102-9
  7. Carpenter, S.R. and D.M. Lodge. 1986. Effects of submerged macrophytes on ecosystem processes. Aquatic Botany 26: 341-370.
  8. Cho, K.-H. 1992. Matter Production and Cycles of Nirogen and Phosphorus by Aquatic Macrophytes in Lake Paltangho. PhD Thesis, Seoul National University, Seoul.
  9. Cho, K.-H. and J.-H. Kim. 1994. Distribution of aquatic macrophytes in the littoral zone of Lake Paltangho. Korean Journal of Ecology 17: 435-442.
  10. Choi, H.K. 2000. Hydrophytes. Korea Research Institute of Bioscience and Biotechnology, Daejeon. Cronk, J.K. and M.S. Fennessy. 2001. Wetland Plants: Biology and Ecology. Lewis, New York.
  11. Cronk, J.K. and M.S. Fennessy. 2001. Wetland Plants: Biology and Ecology. Lewis, New York.
  12. Cyr, H. and J.A. Downing. 1988. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Canada Journal of Fisheries and Aquatic Sciences 45: 975-984.
  13. Davis, G.J. and M.M. Brinson. 1980. Responses of Submersed Vascular Plant Communities to Environmental Change. Report FWS/OBS-79/33U.S. Fish and Wildlife Service, Biological Services Program, Washington, DC.
  14. Deppe, E.R. and R.C. Lathrop. 1992. A comparison of two rake sampling techniques for sampling aquatic macrophytes. Wisconsin Department of Natural Resources Research and Management Findings 32, Madison.
  15. Dodson, S.I., S.E. Arnott and K.L. Cottingham. 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662-2679. https://doi.org/10.1890/0012-9658(2000)081[2662:TRILCB]2.0.CO;2
  16. EPA. 1998. Lake and Reservoir Bioassessment and Biocriteria. Technical Guidance Document. EPA. 841-B-98-007, Washington DC.
  17. Gusewell, S. and W. Koerselman. 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics 5: 37-61. https://doi.org/10.1078/1433-8319-0000022
  18. Hamabata, E. 1997. Distribution, stand structure and yearly biomass fluctuation of elodea nuttallii, an alien species in Lake Biwa - studies of submerged macrophyte communities in Lake Biwa. Japanese Journal of Limnology 58: 173-190. https://doi.org/10.3739/rikusui.58.173
  19. Havens, K.E. 2003. Submerged aquatic vegetation correlations with depth and light attenuating materials in shallow subtropical lake. Hydrobiologia 493: 173-186. https://doi.org/10.1023/A:1025497621547
  20. HBC. 2009. Survey on the Environment and Ecosystem of Lakes in the Han River System. The Han River Basin Commission, Hanam.
  21. Hill, M.O. and H.G. Gauch. 1980. Detrended correspondence analysis: an improved ordination technique. Plant Ecology 42: 47-58. https://doi.org/10.1007/BF00048870
  22. Kenow, K.P., J.E. Lyon, R.K. Hines and A. Elfessi. 2007. Estimating biomass of submersed vegetation using a simple rake sampling technique. Hydrobiologia 575: 447-454. https://doi.org/10.1007/s10750-006-0284-z
  23. Kim, K. 2011. Spatial Variations in Abundance and Biomass of Submerged Macrophytes in a Small Agricultural Reservoir. MS Thesis, Inha University, Incheon.
  24. Lacoul, P. and B. Freedman. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14: 89-136. https://doi.org/10.1139/a06-001
  25. Madsen, J.D. 1999. Point Intercept and Line Intercept Methods for Aquatic Plant Management. Technical Note APCRP-M1-02. US Army Engineer Research and Development Center, Vicksburg, MS.
  26. Madsen, J.D., P.A. Chambers, W.F. James, E.W. Koch and D.F. Westlake. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71-84. https://doi.org/10.1023/A:1017520800568
  27. Meerhoff, M., N. Mazzeo, B. Moss and L. Rodriguez-Gallego. 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377-391.
  28. Murphy, K.J., G. Dickinson, S.M. Thomaz, L.M. Bini, K. Dick, K. Greaves, M.P. Kennedy, S. Livingstone, H. McFerran, J.M. Milne, J. Oldroyd and R.A. Wingfield. 2003. Aquatic plant communities and predictors of diversity in a sub-tropical river floodplain: the upper Rio Parana, Brazil. Aquatic Botany 77: 257-276. https://doi.org/10.1016/S0304-3770(03)00108-6
  29. Na, H.R. 2010. Sexual System and Systematics of Hydril-loideae (Hydrocharitaceae). PhD Thesis, Ajou University, Suwon.
  30. Nelson, S.A.C., K.S. Cheruvelil and P.A. Soranno. 2006. Satellite remote sensing of freshwater macrophytes and the influence of water clarity. Aquatic Botany 85: 289-298. https://doi.org/10.1016/j.aquabot.2006.06.003
  31. Oksanen, J. 2011. Multivariate Analysis of Ecological Communities in R: Vegan Tutorial. http://cc.oulu.fi/-jarioksa/opetus/metodi/vegantutor.pdf/.
  32. Osborne, J.A. 1984. The Osborne submerged aquatic plant sampler for obtaining biomass measurements, p. 58-68. In: Ecological Assessment of Macrophyton: Collection, Use, and Meaning of Data (Dennis, W.M. and B.G. Isom, eds.). American Society for Testing and Materials, Philadelphia.
  33. RAWRIS. 2011. http://rawris.ekr.or.kr/. Rural Agricultural Water Resource Information System, Uiwang.
  34. Rodusky, A.J., B. Sharfstein, T.L. East and R.P. Maki. 2005. A comparison of three methods to collect submerged aquatic vegetation in a shallow lake. Environmental Monitoring and Assessment 110: 87-97. https://doi.org/10.1007/s10661-005-6338-2
  35. Rooney, N. and J. Kalff. 2000. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquatic Botany 68: 321-335. https://doi.org/10.1016/S0304-3770(00)00126-1
  36. Sabol, B.M. 1984. Development and use of Waterways Experiment Station's hydraulically operated submersed aquatic plant sampler, p. 46-57. In: Ecological Assessment of Macrophyton: Collection, Use, and Meaning of Data (Dennis, W.M. and B.G. Isom, eds.). American Society for Testing and Materials, Philadelphia, PA.
  37. Sabol, B.M., R.E. Melton, R. Chamberlain, P. Doering and K. Haunert. 2002. Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries and Coasts 25: 133-141. https://doi.org/10.1007/BF02696057
  38. Sheldon, R.B. and C.W. Boylen. 1977. Maximum depth inhabited by aquatic vascular plants. American Midland Naturalist 97: 248-254. https://doi.org/10.2307/2424706
  39. Sondergaard, M., L. Bruun, T. Lauridsen, E. Jeppesen and T.V. Madsen. 1996. The impact of waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquatic Botany 53: 73-84. https://doi.org/10.1016/0304-3770(95)01013-0
  40. Spears, B.M., I.D.M. Gunn, L. Carvalho, I.J. Winfield, B. Dudley, K. Murphy and L. May. 2009. An evaluation of methods for sampling macrophyte maximum colonisation depth in Loch Leven, Scotland. Aquatic Botany 91: 75-81. https://doi.org/10.1016/j.aquabot.2009.02.007
  41. Straskraba, M., J.G. Tundisi and A. Duncan. 1993. Stateof-the-art of reservoir limnology and water quality management, p. 213-288. In: Comparative Reservoir Limnology and Water Quality Management. (Straskraba, M., J.G. Tundisi and A. Duncan, eds.). Kluwer, Dordrecht, the Netherlands.
  42. Sutton, D.L. 1982. A core sampler for collecting hydrilla propagules. Journal of Aquatic Plant Management 20: 57-59.
  43. Team, R.D.C. 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  44. Thomaz, S.M., T.A. Pagioro, L.M. Bini and K.J. Murphy. 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53-59. https://doi.org/10.1007/s10750-006-0161-9
  45. Thornton, K.W. 1990. Perspective on reservoir limnology, p. 1-14. In: Reservoir Limnology (Thornton, K.W., B.L. Kimmel and F.E. Paync, eds.), John Wiley & Sons.
  46. Trebitz, A.S., S.A. Nichols, S.R. Carpenter and R.C. Lathrop. 1993. Patterns of vegetation change in Lake Wingra following a myriophyllum spicatum decline. Aquatic Botany 46: 325-340. https://doi.org/10.1016/0304-3770(93)90012-L
  47. Van den Berg, M.S., W. Joosse and H. Coops. 2003. A statistical model predicting the occurrence and dynamics of submerged macrophytes in shallow lakes in the Netherlands. Hydrobiologia 506-509: 611-623.
  48. Van Geest, G.J., H. Wolters, F.C.J.M. Roozen, H. Coops, R.M.M. Roijackers, A.D. Buijse and M. Scheffer. 2005. Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia 539: 239-248. https://doi.org/10.1007/s10750-004-4879-y
  49. Wallsten, M. and P.O. Forsgren, 1989. The effects of increased water levels on aquatic macrophytes. Journal of Aquatic Plant Management 27: 32-37.
  50. WAMIS. 2011. http://www.wamis.go.kr/. Water Management Information System, Seoul.
  51. Weaver, M.J., J.J. Magnuson and M.K. Clayton. 1997. Distribution of littoral fishes in structurally complex macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 54: 2277-2289.
  52. WIS. 2011. http://water.nier.go.kr/. Water Information System, Seoul.